| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718 | using System;using System.Collections.Generic;using System.Linq;using System.Text;namespace Renci.SshNet.Security.Cryptography.Ciphers{    /// <summary>    /// Implements Serpent cipher algorithm.    /// </summary>	public class SerpentCipher : BlockCipher	{		private static readonly int ROUNDS = 32;		private static readonly int PHI = unchecked((int)0x9E3779B9);       // (Sqrt(5) - 1) * 2**31		private int[] _workingKey;		private int X0, X1, X2, X3;    // registers        /// <summary>        /// Gets the size of the block in bytes.        /// </summary>        /// <value>        /// The size of the block in bytes.        /// </value>		public override int BlockSize		{			get { return 16; }		}        /// <summary>        /// Initializes a new instance of the <see cref="SerpentCipher"/> class.        /// </summary>        /// <param name="key">The key.</param>        /// <param name="mode">The mode.</param>        /// <param name="padding">The padding.</param>		public SerpentCipher(byte[] key, CipherMode mode, CipherPadding padding)			: base(key, mode, padding)		{			//  TODO:   Refactor this algorithm            var keySize = key.Length * 8;            if (!(keySize == 128 || keySize == 192 || keySize == 256))                throw new ArgumentException(string.Format("KeySize '{0}' is not valid for this algorithm.", keySize));			this._workingKey = this.MakeWorkingKey(key);		}		/// <summary>		/// Encrypts the specified region of the input byte array and copies the encrypted data to the specified region of the output byte array.		/// </summary>		/// <param name="inputBuffer">The input data to encrypt.</param>		/// <param name="inputOffset">The offset into the input byte array from which to begin using data.</param>		/// <param name="inputCount">The number of bytes in the input byte array to use as data.</param>		/// <param name="outputBuffer">The output to which to write encrypted data.</param>		/// <param name="outputOffset">The offset into the output byte array from which to begin writing data.</param>		/// <returns>		/// The number of bytes encrypted.		/// </returns>		public override int EncryptBlock(byte[] inputBuffer, int inputOffset, int inputCount, byte[] outputBuffer, int outputOffset)		{			if (inputCount != this.BlockSize)				throw new ArgumentException("inputCount");			X3 = BytesToWord(inputBuffer, inputOffset);			X2 = BytesToWord(inputBuffer, inputOffset + 4);			X1 = BytesToWord(inputBuffer, inputOffset + 8);			X0 = BytesToWord(inputBuffer, inputOffset + 12);			Sb0(this._workingKey[0] ^ X0, this._workingKey[1] ^ X1, this._workingKey[2] ^ X2, this._workingKey[3] ^ X3); LT();			Sb1(this._workingKey[4] ^ X0, this._workingKey[5] ^ X1, this._workingKey[6] ^ X2, this._workingKey[7] ^ X3); LT();			Sb2(this._workingKey[8] ^ X0, this._workingKey[9] ^ X1, this._workingKey[10] ^ X2, this._workingKey[11] ^ X3); LT();			Sb3(this._workingKey[12] ^ X0, this._workingKey[13] ^ X1, this._workingKey[14] ^ X2, this._workingKey[15] ^ X3); LT();			Sb4(this._workingKey[16] ^ X0, this._workingKey[17] ^ X1, this._workingKey[18] ^ X2, this._workingKey[19] ^ X3); LT();			Sb5(this._workingKey[20] ^ X0, this._workingKey[21] ^ X1, this._workingKey[22] ^ X2, this._workingKey[23] ^ X3); LT();			Sb6(this._workingKey[24] ^ X0, this._workingKey[25] ^ X1, this._workingKey[26] ^ X2, this._workingKey[27] ^ X3); LT();			Sb7(this._workingKey[28] ^ X0, this._workingKey[29] ^ X1, this._workingKey[30] ^ X2, this._workingKey[31] ^ X3); LT();			Sb0(this._workingKey[32] ^ X0, this._workingKey[33] ^ X1, this._workingKey[34] ^ X2, this._workingKey[35] ^ X3); LT();			Sb1(this._workingKey[36] ^ X0, this._workingKey[37] ^ X1, this._workingKey[38] ^ X2, this._workingKey[39] ^ X3); LT();			Sb2(this._workingKey[40] ^ X0, this._workingKey[41] ^ X1, this._workingKey[42] ^ X2, this._workingKey[43] ^ X3); LT();			Sb3(this._workingKey[44] ^ X0, this._workingKey[45] ^ X1, this._workingKey[46] ^ X2, this._workingKey[47] ^ X3); LT();			Sb4(this._workingKey[48] ^ X0, this._workingKey[49] ^ X1, this._workingKey[50] ^ X2, this._workingKey[51] ^ X3); LT();			Sb5(this._workingKey[52] ^ X0, this._workingKey[53] ^ X1, this._workingKey[54] ^ X2, this._workingKey[55] ^ X3); LT();			Sb6(this._workingKey[56] ^ X0, this._workingKey[57] ^ X1, this._workingKey[58] ^ X2, this._workingKey[59] ^ X3); LT();			Sb7(this._workingKey[60] ^ X0, this._workingKey[61] ^ X1, this._workingKey[62] ^ X2, this._workingKey[63] ^ X3); LT();			Sb0(this._workingKey[64] ^ X0, this._workingKey[65] ^ X1, this._workingKey[66] ^ X2, this._workingKey[67] ^ X3); LT();			Sb1(this._workingKey[68] ^ X0, this._workingKey[69] ^ X1, this._workingKey[70] ^ X2, this._workingKey[71] ^ X3); LT();			Sb2(this._workingKey[72] ^ X0, this._workingKey[73] ^ X1, this._workingKey[74] ^ X2, this._workingKey[75] ^ X3); LT();			Sb3(this._workingKey[76] ^ X0, this._workingKey[77] ^ X1, this._workingKey[78] ^ X2, this._workingKey[79] ^ X3); LT();			Sb4(this._workingKey[80] ^ X0, this._workingKey[81] ^ X1, this._workingKey[82] ^ X2, this._workingKey[83] ^ X3); LT();			Sb5(this._workingKey[84] ^ X0, this._workingKey[85] ^ X1, this._workingKey[86] ^ X2, this._workingKey[87] ^ X3); LT();			Sb6(this._workingKey[88] ^ X0, this._workingKey[89] ^ X1, this._workingKey[90] ^ X2, this._workingKey[91] ^ X3); LT();			Sb7(this._workingKey[92] ^ X0, this._workingKey[93] ^ X1, this._workingKey[94] ^ X2, this._workingKey[95] ^ X3); LT();			Sb0(this._workingKey[96] ^ X0, this._workingKey[97] ^ X1, this._workingKey[98] ^ X2, this._workingKey[99] ^ X3); LT();			Sb1(this._workingKey[100] ^ X0, this._workingKey[101] ^ X1, this._workingKey[102] ^ X2, this._workingKey[103] ^ X3); LT();			Sb2(this._workingKey[104] ^ X0, this._workingKey[105] ^ X1, this._workingKey[106] ^ X2, this._workingKey[107] ^ X3); LT();			Sb3(this._workingKey[108] ^ X0, this._workingKey[109] ^ X1, this._workingKey[110] ^ X2, this._workingKey[111] ^ X3); LT();			Sb4(this._workingKey[112] ^ X0, this._workingKey[113] ^ X1, this._workingKey[114] ^ X2, this._workingKey[115] ^ X3); LT();			Sb5(this._workingKey[116] ^ X0, this._workingKey[117] ^ X1, this._workingKey[118] ^ X2, this._workingKey[119] ^ X3); LT();			Sb6(this._workingKey[120] ^ X0, this._workingKey[121] ^ X1, this._workingKey[122] ^ X2, this._workingKey[123] ^ X3); LT();			Sb7(this._workingKey[124] ^ X0, this._workingKey[125] ^ X1, this._workingKey[126] ^ X2, this._workingKey[127] ^ X3);			WordToBytes(this._workingKey[131] ^ X3, outputBuffer, outputOffset);			WordToBytes(this._workingKey[130] ^ X2, outputBuffer, outputOffset + 4);			WordToBytes(this._workingKey[129] ^ X1, outputBuffer, outputOffset + 8);			WordToBytes(this._workingKey[128] ^ X0, outputBuffer, outputOffset + 12);			return this.BlockSize;		}		/// <summary>		/// Decrypts the specified region of the input byte array and copies the decrypted data to the specified region of the output byte array.		/// </summary>		/// <param name="inputBuffer">The input data to decrypt.</param>		/// <param name="inputOffset">The offset into the input byte array from which to begin using data.</param>		/// <param name="inputCount">The number of bytes in the input byte array to use as data.</param>		/// <param name="outputBuffer">The output to which to write decrypted data.</param>		/// <param name="outputOffset">The offset into the output byte array from which to begin writing data.</param>		/// <returns>		/// The number of bytes decrypted.		/// </returns>		public override int DecryptBlock(byte[] inputBuffer, int inputOffset, int inputCount, byte[] outputBuffer, int outputOffset)		{			if (inputCount != this.BlockSize)				throw new ArgumentException("inputCount");			X3 = this._workingKey[131] ^ BytesToWord(inputBuffer, inputOffset);			X2 = this._workingKey[130] ^ BytesToWord(inputBuffer, inputOffset + 4);			X1 = this._workingKey[129] ^ BytesToWord(inputBuffer, inputOffset + 8);			X0 = this._workingKey[128] ^ BytesToWord(inputBuffer, inputOffset + 12);			Ib7(X0, X1, X2, X3);			X0 ^= this._workingKey[124]; X1 ^= this._workingKey[125]; X2 ^= this._workingKey[126]; X3 ^= this._workingKey[127];			InverseLT(); Ib6(X0, X1, X2, X3);			X0 ^= this._workingKey[120]; X1 ^= this._workingKey[121]; X2 ^= this._workingKey[122]; X3 ^= this._workingKey[123];			InverseLT(); Ib5(X0, X1, X2, X3);			X0 ^= this._workingKey[116]; X1 ^= this._workingKey[117]; X2 ^= this._workingKey[118]; X3 ^= this._workingKey[119];			InverseLT(); Ib4(X0, X1, X2, X3);			X0 ^= this._workingKey[112]; X1 ^= this._workingKey[113]; X2 ^= this._workingKey[114]; X3 ^= this._workingKey[115];			InverseLT(); Ib3(X0, X1, X2, X3);			X0 ^= this._workingKey[108]; X1 ^= this._workingKey[109]; X2 ^= this._workingKey[110]; X3 ^= this._workingKey[111];			InverseLT(); Ib2(X0, X1, X2, X3);			X0 ^= this._workingKey[104]; X1 ^= this._workingKey[105]; X2 ^= this._workingKey[106]; X3 ^= this._workingKey[107];			InverseLT(); Ib1(X0, X1, X2, X3);			X0 ^= this._workingKey[100]; X1 ^= this._workingKey[101]; X2 ^= this._workingKey[102]; X3 ^= this._workingKey[103];			InverseLT(); Ib0(X0, X1, X2, X3);			X0 ^= this._workingKey[96]; X1 ^= this._workingKey[97]; X2 ^= this._workingKey[98]; X3 ^= this._workingKey[99];			InverseLT(); Ib7(X0, X1, X2, X3);			X0 ^= this._workingKey[92]; X1 ^= this._workingKey[93]; X2 ^= this._workingKey[94]; X3 ^= this._workingKey[95];			InverseLT(); Ib6(X0, X1, X2, X3);			X0 ^= this._workingKey[88]; X1 ^= this._workingKey[89]; X2 ^= this._workingKey[90]; X3 ^= this._workingKey[91];			InverseLT(); Ib5(X0, X1, X2, X3);			X0 ^= this._workingKey[84]; X1 ^= this._workingKey[85]; X2 ^= this._workingKey[86]; X3 ^= this._workingKey[87];			InverseLT(); Ib4(X0, X1, X2, X3);			X0 ^= this._workingKey[80]; X1 ^= this._workingKey[81]; X2 ^= this._workingKey[82]; X3 ^= this._workingKey[83];			InverseLT(); Ib3(X0, X1, X2, X3);			X0 ^= this._workingKey[76]; X1 ^= this._workingKey[77]; X2 ^= this._workingKey[78]; X3 ^= this._workingKey[79];			InverseLT(); Ib2(X0, X1, X2, X3);			X0 ^= this._workingKey[72]; X1 ^= this._workingKey[73]; X2 ^= this._workingKey[74]; X3 ^= this._workingKey[75];			InverseLT(); Ib1(X0, X1, X2, X3);			X0 ^= this._workingKey[68]; X1 ^= this._workingKey[69]; X2 ^= this._workingKey[70]; X3 ^= this._workingKey[71];			InverseLT(); Ib0(X0, X1, X2, X3);			X0 ^= this._workingKey[64]; X1 ^= this._workingKey[65]; X2 ^= this._workingKey[66]; X3 ^= this._workingKey[67];			InverseLT(); Ib7(X0, X1, X2, X3);			X0 ^= this._workingKey[60]; X1 ^= this._workingKey[61]; X2 ^= this._workingKey[62]; X3 ^= this._workingKey[63];			InverseLT(); Ib6(X0, X1, X2, X3);			X0 ^= this._workingKey[56]; X1 ^= this._workingKey[57]; X2 ^= this._workingKey[58]; X3 ^= this._workingKey[59];			InverseLT(); Ib5(X0, X1, X2, X3);			X0 ^= this._workingKey[52]; X1 ^= this._workingKey[53]; X2 ^= this._workingKey[54]; X3 ^= this._workingKey[55];			InverseLT(); Ib4(X0, X1, X2, X3);			X0 ^= this._workingKey[48]; X1 ^= this._workingKey[49]; X2 ^= this._workingKey[50]; X3 ^= this._workingKey[51];			InverseLT(); Ib3(X0, X1, X2, X3);			X0 ^= this._workingKey[44]; X1 ^= this._workingKey[45]; X2 ^= this._workingKey[46]; X3 ^= this._workingKey[47];			InverseLT(); Ib2(X0, X1, X2, X3);			X0 ^= this._workingKey[40]; X1 ^= this._workingKey[41]; X2 ^= this._workingKey[42]; X3 ^= this._workingKey[43];			InverseLT(); Ib1(X0, X1, X2, X3);			X0 ^= this._workingKey[36]; X1 ^= this._workingKey[37]; X2 ^= this._workingKey[38]; X3 ^= this._workingKey[39];			InverseLT(); Ib0(X0, X1, X2, X3);			X0 ^= this._workingKey[32]; X1 ^= this._workingKey[33]; X2 ^= this._workingKey[34]; X3 ^= this._workingKey[35];			InverseLT(); Ib7(X0, X1, X2, X3);			X0 ^= this._workingKey[28]; X1 ^= this._workingKey[29]; X2 ^= this._workingKey[30]; X3 ^= this._workingKey[31];			InverseLT(); Ib6(X0, X1, X2, X3);			X0 ^= this._workingKey[24]; X1 ^= this._workingKey[25]; X2 ^= this._workingKey[26]; X3 ^= this._workingKey[27];			InverseLT(); Ib5(X0, X1, X2, X3);			X0 ^= this._workingKey[20]; X1 ^= this._workingKey[21]; X2 ^= this._workingKey[22]; X3 ^= this._workingKey[23];			InverseLT(); Ib4(X0, X1, X2, X3);			X0 ^= this._workingKey[16]; X1 ^= this._workingKey[17]; X2 ^= this._workingKey[18]; X3 ^= this._workingKey[19];			InverseLT(); Ib3(X0, X1, X2, X3);			X0 ^= this._workingKey[12]; X1 ^= this._workingKey[13]; X2 ^= this._workingKey[14]; X3 ^= this._workingKey[15];			InverseLT(); Ib2(X0, X1, X2, X3);			X0 ^= this._workingKey[8]; X1 ^= this._workingKey[9]; X2 ^= this._workingKey[10]; X3 ^= this._workingKey[11];			InverseLT(); Ib1(X0, X1, X2, X3);			X0 ^= this._workingKey[4]; X1 ^= this._workingKey[5]; X2 ^= this._workingKey[6]; X3 ^= this._workingKey[7];			InverseLT(); Ib0(X0, X1, X2, X3);			WordToBytes(X3 ^ this._workingKey[3], outputBuffer, outputOffset);			WordToBytes(X2 ^ this._workingKey[2], outputBuffer, outputOffset + 4);			WordToBytes(X1 ^ this._workingKey[1], outputBuffer, outputOffset + 8);			WordToBytes(X0 ^ this._workingKey[0], outputBuffer, outputOffset + 12);			return this.BlockSize;		}		/**		* Expand a user-supplied key material into a session key.		*		* @param key  The user-key bytes (multiples of 4) to use.		* @exception ArgumentException		*/		private int[] MakeWorkingKey(byte[] key)		{			//			// pad key to 256 bits			//			int[] kPad = new int[16];			int off = 0;			int length = 0;			for (off = key.Length - 4; off > 0; off -= 4)			{				kPad[length++] = BytesToWord(key, off);			}			if (off == 0)			{				kPad[length++] = BytesToWord(key, 0);				if (length < 8)				{					kPad[length] = 1;				}			}			else			{				throw new ArgumentException("key must be a multiple of 4 bytes");			}			//			// expand the padded key up to 33 x 128 bits of key material			//			int amount = (ROUNDS + 1) * 4;			int[] w = new int[amount];			//			// compute w0 to w7 from w-8 to w-1			//			for (int i = 8; i < 16; i++)			{				kPad[i] = RotateLeft(kPad[i - 8] ^ kPad[i - 5] ^ kPad[i - 3] ^ kPad[i - 1] ^ PHI ^ (i - 8), 11);			}			Array.Copy(kPad, 8, w, 0, 8);			//			// compute w8 to w136			//			for (int i = 8; i < amount; i++)			{				w[i] = RotateLeft(w[i - 8] ^ w[i - 5] ^ w[i - 3] ^ w[i - 1] ^ PHI ^ i, 11);			}			//			// create the working keys by processing w with the Sbox and IP			//			Sb3(w[0], w[1], w[2], w[3]);			w[0] = X0; w[1] = X1; w[2] = X2; w[3] = X3;			Sb2(w[4], w[5], w[6], w[7]);			w[4] = X0; w[5] = X1; w[6] = X2; w[7] = X3;			Sb1(w[8], w[9], w[10], w[11]);			w[8] = X0; w[9] = X1; w[10] = X2; w[11] = X3;			Sb0(w[12], w[13], w[14], w[15]);			w[12] = X0; w[13] = X1; w[14] = X2; w[15] = X3;			Sb7(w[16], w[17], w[18], w[19]);			w[16] = X0; w[17] = X1; w[18] = X2; w[19] = X3;			Sb6(w[20], w[21], w[22], w[23]);			w[20] = X0; w[21] = X1; w[22] = X2; w[23] = X3;			Sb5(w[24], w[25], w[26], w[27]);			w[24] = X0; w[25] = X1; w[26] = X2; w[27] = X3;			Sb4(w[28], w[29], w[30], w[31]);			w[28] = X0; w[29] = X1; w[30] = X2; w[31] = X3;			Sb3(w[32], w[33], w[34], w[35]);			w[32] = X0; w[33] = X1; w[34] = X2; w[35] = X3;			Sb2(w[36], w[37], w[38], w[39]);			w[36] = X0; w[37] = X1; w[38] = X2; w[39] = X3;			Sb1(w[40], w[41], w[42], w[43]);			w[40] = X0; w[41] = X1; w[42] = X2; w[43] = X3;			Sb0(w[44], w[45], w[46], w[47]);			w[44] = X0; w[45] = X1; w[46] = X2; w[47] = X3;			Sb7(w[48], w[49], w[50], w[51]);			w[48] = X0; w[49] = X1; w[50] = X2; w[51] = X3;			Sb6(w[52], w[53], w[54], w[55]);			w[52] = X0; w[53] = X1; w[54] = X2; w[55] = X3;			Sb5(w[56], w[57], w[58], w[59]);			w[56] = X0; w[57] = X1; w[58] = X2; w[59] = X3;			Sb4(w[60], w[61], w[62], w[63]);			w[60] = X0; w[61] = X1; w[62] = X2; w[63] = X3;			Sb3(w[64], w[65], w[66], w[67]);			w[64] = X0; w[65] = X1; w[66] = X2; w[67] = X3;			Sb2(w[68], w[69], w[70], w[71]);			w[68] = X0; w[69] = X1; w[70] = X2; w[71] = X3;			Sb1(w[72], w[73], w[74], w[75]);			w[72] = X0; w[73] = X1; w[74] = X2; w[75] = X3;			Sb0(w[76], w[77], w[78], w[79]);			w[76] = X0; w[77] = X1; w[78] = X2; w[79] = X3;			Sb7(w[80], w[81], w[82], w[83]);			w[80] = X0; w[81] = X1; w[82] = X2; w[83] = X3;			Sb6(w[84], w[85], w[86], w[87]);			w[84] = X0; w[85] = X1; w[86] = X2; w[87] = X3;			Sb5(w[88], w[89], w[90], w[91]);			w[88] = X0; w[89] = X1; w[90] = X2; w[91] = X3;			Sb4(w[92], w[93], w[94], w[95]);			w[92] = X0; w[93] = X1; w[94] = X2; w[95] = X3;			Sb3(w[96], w[97], w[98], w[99]);			w[96] = X0; w[97] = X1; w[98] = X2; w[99] = X3;			Sb2(w[100], w[101], w[102], w[103]);			w[100] = X0; w[101] = X1; w[102] = X2; w[103] = X3;			Sb1(w[104], w[105], w[106], w[107]);			w[104] = X0; w[105] = X1; w[106] = X2; w[107] = X3;			Sb0(w[108], w[109], w[110], w[111]);			w[108] = X0; w[109] = X1; w[110] = X2; w[111] = X3;			Sb7(w[112], w[113], w[114], w[115]);			w[112] = X0; w[113] = X1; w[114] = X2; w[115] = X3;			Sb6(w[116], w[117], w[118], w[119]);			w[116] = X0; w[117] = X1; w[118] = X2; w[119] = X3;			Sb5(w[120], w[121], w[122], w[123]);			w[120] = X0; w[121] = X1; w[122] = X2; w[123] = X3;			Sb4(w[124], w[125], w[126], w[127]);			w[124] = X0; w[125] = X1; w[126] = X2; w[127] = X3;			Sb3(w[128], w[129], w[130], w[131]);			w[128] = X0; w[129] = X1; w[130] = X2; w[131] = X3;			return w;		}		private int RotateLeft(int x, int bits)		{			return ((x << bits) | (int)((uint)x >> (32 - bits)));		}		private int RotateRight(int x, int bits)		{			return ((int)((uint)x >> bits) | (x << (32 - bits)));		}		private int BytesToWord(byte[] src, int srcOff)		{			return (((src[srcOff] & 0xff) << 24) | ((src[srcOff + 1] & 0xff) << 16) |			((src[srcOff + 2] & 0xff) << 8) | ((src[srcOff + 3] & 0xff)));		}		private void WordToBytes(int word, byte[] dst, int dstOff)		{			dst[dstOff + 3] = (byte)(word);			dst[dstOff + 2] = (byte)((uint)word >> 8);			dst[dstOff + 1] = (byte)((uint)word >> 16);			dst[dstOff] = (byte)((uint)word >> 24);		}		/*		* The sboxes below are based on the work of Brian Gladman and		* Sam Simpson, whose original notice appears below.		* <p>		* For further details see:		*      http://fp.gladman.plus.com/cryptography_technology/serpent/		* </p>		*/		/* Partially optimised Serpent S Box bool functions derived  */		/* using a recursive descent analyser but without a full search */		/* of all subtrees. This set of S boxes is the result of work    */		/* by Sam Simpson and Brian Gladman using the spare time on a    */		/* cluster of high capacity servers to search for S boxes with    */		/* this customised search engine. There are now an average of    */		/* 15.375 terms    per S box.                                        */		/*                                                              */		/* Copyright:   Dr B. R Gladman (gladman@seven77.demon.co.uk)   */		/*                and Sam Simpson (s.simpson@mia.co.uk)            */		/*              17th December 1998                                */		/*                                                              */		/* We hereby give permission for information in this file to be */		/* used freely subject only to acknowledgement of its origin.    */		/**		* S0 - { 3, 8,15, 1,10, 6, 5,11,14,13, 4, 2, 7, 0, 9,12 } - 15 terms.		*/		private void Sb0(int a, int b, int c, int d)		{			int t1 = a ^ d;			int t3 = c ^ t1;			int t4 = b ^ t3;			X3 = (a & d) ^ t4;			int t7 = a ^ (b & t1);			X2 = t4 ^ (c | t7);			int t12 = X3 & (t3 ^ t7);			X1 = (~t3) ^ t12;			X0 = t12 ^ (~t7);		}		/**		* InvSO - {13, 3,11, 0,10, 6, 5,12, 1,14, 4, 7,15, 9, 8, 2 } - 15 terms.		*/		private void Ib0(int a, int b, int c, int d)		{			int t1 = ~a;			int t2 = a ^ b;			int t4 = d ^ (t1 | t2);			int t5 = c ^ t4;			X2 = t2 ^ t5;			int t8 = t1 ^ (d & t2);			X1 = t4 ^ (X2 & t8);			X3 = (a & t4) ^ (t5 | X1);			X0 = X3 ^ (t5 ^ t8);		}		/**		* S1 - {15,12, 2, 7, 9, 0, 5,10, 1,11,14, 8, 6,13, 3, 4 } - 14 terms.		*/		private void Sb1(int a, int b, int c, int d)		{			int t2 = b ^ (~a);			int t5 = c ^ (a | t2);			X2 = d ^ t5;			int t7 = b ^ (d | t2);			int t8 = t2 ^ X2;			X3 = t8 ^ (t5 & t7);			int t11 = t5 ^ t7;			X1 = X3 ^ t11;			X0 = t5 ^ (t8 & t11);		}		/**		* InvS1 - { 5, 8, 2,14,15, 6,12, 3,11, 4, 7, 9, 1,13,10, 0 } - 14 steps.		*/		private void Ib1(int a, int b, int c, int d)		{			int t1 = b ^ d;			int t3 = a ^ (b & t1);			int t4 = t1 ^ t3;			X3 = c ^ t4;			int t7 = b ^ (t1 & t3);			int t8 = X3 | t7;			X1 = t3 ^ t8;			int t10 = ~X1;			int t11 = X3 ^ t7;			X0 = t10 ^ t11;			X2 = t4 ^ (t10 | t11);		}		/**		* S2 - { 8, 6, 7, 9, 3,12,10,15,13, 1,14, 4, 0,11, 5, 2 } - 16 terms.		*/		private void Sb2(int a, int b, int c, int d)		{			int t1 = ~a;			int t2 = b ^ d;			int t3 = c & t1;			X0 = t2 ^ t3;			int t5 = c ^ t1;			int t6 = c ^ X0;			int t7 = b & t6;			X3 = t5 ^ t7;			X2 = a ^ ((d | t7) & (X0 | t5));			X1 = (t2 ^ X3) ^ (X2 ^ (d | t1));		}		/**		* InvS2 - {12, 9,15, 4,11,14, 1, 2, 0, 3, 6,13, 5, 8,10, 7 } - 16 steps.		*/		private void Ib2(int a, int b, int c, int d)		{			int t1 = b ^ d;			int t2 = ~t1;			int t3 = a ^ c;			int t4 = c ^ t1;			int t5 = b & t4;			X0 = t3 ^ t5;			int t7 = a | t2;			int t8 = d ^ t7;			int t9 = t3 | t8;			X3 = t1 ^ t9;			int t11 = ~t4;			int t12 = X0 | X3;			X1 = t11 ^ t12;			X2 = (d & t11) ^ (t3 ^ t12);		}		/**		* S3 - { 0,15,11, 8,12, 9, 6, 3,13, 1, 2, 4,10, 7, 5,14 } - 16 terms.		*/		private void Sb3(int a, int b, int c, int d)		{			int t1 = a ^ b;			int t2 = a & c;			int t3 = a | d;			int t4 = c ^ d;			int t5 = t1 & t3;			int t6 = t2 | t5;			X2 = t4 ^ t6;			int t8 = b ^ t3;			int t9 = t6 ^ t8;			int t10 = t4 & t9;			X0 = t1 ^ t10;			int t12 = X2 & X0;			X1 = t9 ^ t12;			X3 = (b | d) ^ (t4 ^ t12);		}		/**		* InvS3 - { 0, 9,10, 7,11,14, 6,13, 3, 5,12, 2, 4, 8,15, 1 } - 15 terms		*/		private void Ib3(int a, int b, int c, int d)		{			int t1 = a | b;			int t2 = b ^ c;			int t3 = b & t2;			int t4 = a ^ t3;			int t5 = c ^ t4;			int t6 = d | t4;			X0 = t2 ^ t6;			int t8 = t2 | t6;			int t9 = d ^ t8;			X2 = t5 ^ t9;			int t11 = t1 ^ t9;			int t12 = X0 & t11;			X3 = t4 ^ t12;			X1 = X3 ^ (X0 ^ t11);		}		/**		* S4 - { 1,15, 8, 3,12, 0,11, 6, 2, 5, 4,10, 9,14, 7,13 } - 15 terms.		*/		private void Sb4(int a, int b, int c, int d)		{			int t1 = a ^ d;			int t2 = d & t1;			int t3 = c ^ t2;			int t4 = b | t3;			X3 = t1 ^ t4;			int t6 = ~b;			int t7 = t1 | t6;			X0 = t3 ^ t7;			int t9 = a & X0;			int t10 = t1 ^ t6;			int t11 = t4 & t10;			X2 = t9 ^ t11;			X1 = (a ^ t3) ^ (t10 & X2);		}		/**		* InvS4 - { 5, 0, 8, 3,10, 9, 7,14, 2,12,11, 6, 4,15,13, 1 } - 15 terms.		*/		private void Ib4(int a, int b, int c, int d)		{			int t1 = c | d;			int t2 = a & t1;			int t3 = b ^ t2;			int t4 = a & t3;			int t5 = c ^ t4;			X1 = d ^ t5;			int t7 = ~a;			int t8 = t5 & X1;			X3 = t3 ^ t8;			int t10 = X1 | t7;			int t11 = d ^ t10;			X0 = X3 ^ t11;			X2 = (t3 & t11) ^ (X1 ^ t7);		}		/**		* S5 - {15, 5, 2,11, 4,10, 9,12, 0, 3,14, 8,13, 6, 7, 1 } - 16 terms.		*/		private void Sb5(int a, int b, int c, int d)		{			int t1 = ~a;			int t2 = a ^ b;			int t3 = a ^ d;			int t4 = c ^ t1;			int t5 = t2 | t3;			X0 = t4 ^ t5;			int t7 = d & X0;			int t8 = t2 ^ X0;			X1 = t7 ^ t8;			int t10 = t1 | X0;			int t11 = t2 | t7;			int t12 = t3 ^ t10;			X2 = t11 ^ t12;			X3 = (b ^ t7) ^ (X1 & t12);		}		/**		* InvS5 - { 8,15, 2, 9, 4, 1,13,14,11, 6, 5, 3, 7,12,10, 0 } - 16 terms.		*/		private void Ib5(int a, int b, int c, int d)		{			int t1 = ~c;			int t2 = b & t1;			int t3 = d ^ t2;			int t4 = a & t3;			int t5 = b ^ t1;			X3 = t4 ^ t5;			int t7 = b | X3;			int t8 = a & t7;			X1 = t3 ^ t8;			int t10 = a | d;			int t11 = t1 ^ t7;			X0 = t10 ^ t11;			X2 = (b & t10) ^ (t4 | (a ^ c));		}		/**		* S6 - { 7, 2,12, 5, 8, 4, 6,11,14, 9, 1,15,13, 3,10, 0 } - 15 terms.		*/		private void Sb6(int a, int b, int c, int d)		{			int t1 = ~a;			int t2 = a ^ d;			int t3 = b ^ t2;			int t4 = t1 | t2;			int t5 = c ^ t4;			X1 = b ^ t5;			int t7 = t2 | X1;			int t8 = d ^ t7;			int t9 = t5 & t8;			X2 = t3 ^ t9;			int t11 = t5 ^ t8;			X0 = X2 ^ t11;			X3 = (~t5) ^ (t3 & t11);		}		/**		* InvS6 - {15,10, 1,13, 5, 3, 6, 0, 4, 9,14, 7, 2,12, 8,11 } - 15 terms.		*/		private void Ib6(int a, int b, int c, int d)		{			int t1 = ~a;			int t2 = a ^ b;			int t3 = c ^ t2;			int t4 = c | t1;			int t5 = d ^ t4;			X1 = t3 ^ t5;			int t7 = t3 & t5;			int t8 = t2 ^ t7;			int t9 = b | t8;			X3 = t5 ^ t9;			int t11 = b | X3;			X0 = t8 ^ t11;			X2 = (d & t1) ^ (t3 ^ t11);		}		/**		* S7 - { 1,13,15, 0,14, 8, 2,11, 7, 4,12,10, 9, 3, 5, 6 } - 16 terms.		*/		private void Sb7(int a, int b, int c, int d)		{			int t1 = b ^ c;			int t2 = c & t1;			int t3 = d ^ t2;			int t4 = a ^ t3;			int t5 = d | t1;			int t6 = t4 & t5;			X1 = b ^ t6;			int t8 = t3 | X1;			int t9 = a & t4;			X3 = t1 ^ t9;			int t11 = t4 ^ t8;			int t12 = X3 & t11;			X2 = t3 ^ t12;			X0 = (~t11) ^ (X3 & X2);		}		/**		* InvS7 - { 3, 0, 6,13, 9,14,15, 8, 5,12,11, 7,10, 1, 4, 2 } - 17 terms.		*/		private void Ib7(int a, int b, int c, int d)		{			int t3 = c | (a & b);			int t4 = d & (a | b);			X3 = t3 ^ t4;			int t6 = ~d;			int t7 = b ^ t4;			int t9 = t7 | (X3 ^ t6);			X1 = a ^ t9;			X0 = (c ^ t7) ^ (d | X1);			X2 = (t3 ^ X1) ^ (X0 ^ (a & X3));		}		/**		* Apply the linear transformation to the register set.		*/		private void LT()		{			int x0 = RotateLeft(X0, 13);			int x2 = RotateLeft(X2, 3);			int x1 = X1 ^ x0 ^ x2;			int x3 = X3 ^ x2 ^ x0 << 3;			X1 = RotateLeft(x1, 1);			X3 = RotateLeft(x3, 7);			X0 = RotateLeft(x0 ^ X1 ^ X3, 5);			X2 = RotateLeft(x2 ^ X3 ^ (X1 << 7), 22);		}		/**		* Apply the inverse of the linear transformation to the register set.		*/		private void InverseLT()		{			int x2 = RotateRight(X2, 22) ^ X3 ^ (X1 << 7);			int x0 = RotateRight(X0, 5) ^ X1 ^ X3;			int x3 = RotateRight(X3, 7);			int x1 = RotateRight(X1, 1);			X3 = x3 ^ x2 ^ x0 << 3;			X1 = x1 ^ x0 ^ x2;			X2 = RotateRight(x2, 3);			X0 = RotateRight(x0, 13);		}	}}
 |