| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122 | using System;using System.Collections;using System.Diagnostics;using System.Text;using Renci.SshNet.Security.Org.BouncyCastle.Math.EC.Multiplier;namespace Renci.SshNet.Security.Org.BouncyCastle.Math.EC{    /**     * base class for points on elliptic curves.     */    internal abstract class ECPoint    {        protected static ECFieldElement[] EMPTY_ZS = new ECFieldElement[0];        protected static ECFieldElement[] GetInitialZCoords(ECCurve curve)        {            // Cope with null curve, most commonly used by implicitlyCa            int coord = null == curve ? ECCurve.COORD_AFFINE : curve.CoordinateSystem;            switch (coord)            {                case ECCurve.COORD_AFFINE:                case ECCurve.COORD_LAMBDA_AFFINE:                    return EMPTY_ZS;                default:                    break;            }            ECFieldElement one = curve.FromBigInteger(BigInteger.One);            switch (coord)            {                case ECCurve.COORD_HOMOGENEOUS:                case ECCurve.COORD_JACOBIAN:                case ECCurve.COORD_LAMBDA_PROJECTIVE:                    return new ECFieldElement[] { one };                case ECCurve.COORD_JACOBIAN_CHUDNOVSKY:                    return new ECFieldElement[] { one, one, one };                case ECCurve.COORD_JACOBIAN_MODIFIED:                    return new ECFieldElement[] { one, curve.A };                default:                    throw new ArgumentException("unknown coordinate system");            }        }        protected internal readonly ECCurve m_curve;        protected internal readonly ECFieldElement m_x, m_y;        protected internal readonly ECFieldElement[] m_zs;        protected internal readonly bool m_withCompression;        // Dictionary is (string -> PreCompInfo)        protected internal IDictionary m_preCompTable = null;        protected ECPoint(ECCurve curve, ECFieldElement	x, ECFieldElement y, bool withCompression)            : this(curve, x, y, GetInitialZCoords(curve), withCompression)        {        }        internal ECPoint(ECCurve curve, ECFieldElement x, ECFieldElement y, ECFieldElement[] zs, bool withCompression)        {            this.m_curve = curve;            this.m_x = x;            this.m_y = y;            this.m_zs = zs;            this.m_withCompression = withCompression;        }        protected abstract bool SatisfiesCurveEquation();        protected virtual bool SatisfiesOrder()        {            if (BigInteger.One.Equals(Curve.Cofactor))                return true;            BigInteger n = Curve.Order;            // TODO Require order to be available for all curves            return n == null || ECAlgorithms.ReferenceMultiply(this, n).IsInfinity;        }        public ECPoint GetDetachedPoint()        {            return Normalize().Detach();        }        public virtual ECCurve Curve        {            get { return m_curve; }        }        protected abstract ECPoint Detach();        protected virtual int CurveCoordinateSystem        {            get            {                // Cope with null curve, most commonly used by implicitlyCa                return null == m_curve ? ECCurve.COORD_AFFINE : m_curve.CoordinateSystem;            }        }        /**         * Returns the affine x-coordinate after checking that this point is normalized.         *          * @return The affine x-coordinate of this point         * @throws IllegalStateException if the point is not normalized         */        public virtual ECFieldElement AffineXCoord        {            get            {                CheckNormalized();                return XCoord;            }        }        /**         * Returns the affine y-coordinate after checking that this point is normalized         *          * @return The affine y-coordinate of this point         * @throws IllegalStateException if the point is not normalized         */        public virtual ECFieldElement AffineYCoord        {            get            {                CheckNormalized();                return YCoord;            }        }        /**         * Returns the x-coordinate.         *          * Caution: depending on the curve's coordinate system, this may not be the same value as in an         * affine coordinate system; use Normalize() to get a point where the coordinates have their         * affine values, or use AffineXCoord if you expect the point to already have been normalized.         *          * @return the x-coordinate of this point         */        public virtual ECFieldElement XCoord        {            get { return m_x; }        }        /**         * Returns the y-coordinate.         *          * Caution: depending on the curve's coordinate system, this may not be the same value as in an         * affine coordinate system; use Normalize() to get a point where the coordinates have their         * affine values, or use AffineYCoord if you expect the point to already have been normalized.         *          * @return the y-coordinate of this point         */        public virtual ECFieldElement YCoord        {            get { return m_y; }        }        public virtual ECFieldElement GetZCoord(int index)        {            return (index < 0 || index >= m_zs.Length) ? null : m_zs[index];        }        public virtual ECFieldElement[] GetZCoords()        {            int zsLen = m_zs.Length;            if (zsLen == 0)            {                return m_zs;            }            ECFieldElement[] copy = new ECFieldElement[zsLen];            Array.Copy(m_zs, 0, copy, 0, zsLen);            return copy;        }        protected internal ECFieldElement RawXCoord        {            get { return m_x; }        }        protected internal ECFieldElement RawYCoord        {            get { return m_y; }        }        protected internal ECFieldElement[] RawZCoords        {            get { return m_zs; }        }        protected virtual void CheckNormalized()        {            if (!IsNormalized())                throw new InvalidOperationException("point not in normal form");        }        public virtual bool IsNormalized()        {            int coord = this.CurveCoordinateSystem;            return coord == ECCurve.COORD_AFFINE                || coord == ECCurve.COORD_LAMBDA_AFFINE                || IsInfinity                || RawZCoords[0].IsOne;        }        /**         * Normalization ensures that any projective coordinate is 1, and therefore that the x, y         * coordinates reflect those of the equivalent point in an affine coordinate system.         *          * @return a new ECPoint instance representing the same point, but with normalized coordinates         */        public virtual ECPoint Normalize()        {            if (this.IsInfinity)            {                return this;            }            switch (this.CurveCoordinateSystem)            {                case ECCurve.COORD_AFFINE:                case ECCurve.COORD_LAMBDA_AFFINE:                {                    return this;                }                default:                {                    ECFieldElement Z1 = RawZCoords[0];                    if (Z1.IsOne)                    {                        return this;                    }                    return Normalize(Z1.Invert());                }            }        }        internal virtual ECPoint Normalize(ECFieldElement zInv)        {            switch (this.CurveCoordinateSystem)            {                case ECCurve.COORD_HOMOGENEOUS:                case ECCurve.COORD_LAMBDA_PROJECTIVE:                {                    return CreateScaledPoint(zInv, zInv);                }                case ECCurve.COORD_JACOBIAN:                case ECCurve.COORD_JACOBIAN_CHUDNOVSKY:                case ECCurve.COORD_JACOBIAN_MODIFIED:                {                    ECFieldElement zInv2 = zInv.Square(), zInv3 = zInv2.Multiply(zInv);                    return CreateScaledPoint(zInv2, zInv3);                }                default:                {                    throw new InvalidOperationException("not a projective coordinate system");                }            }        }        protected virtual ECPoint CreateScaledPoint(ECFieldElement sx, ECFieldElement sy)        {            return Curve.CreateRawPoint(RawXCoord.Multiply(sx), RawYCoord.Multiply(sy), IsCompressed);        }        public bool IsInfinity        {            get { return m_x == null && m_y == null; }        }        public bool IsCompressed        {            get { return m_withCompression; }        }        public bool IsValid()        {            return ImplIsValid(false, true);        }        internal bool IsValidPartial()        {            return ImplIsValid(false, false);        }        internal bool ImplIsValid(bool decompressed, bool checkOrder)        {            if (IsInfinity)                return true;            ValidityCallback callback = new ValidityCallback(this, decompressed, checkOrder);            ValidityPreCompInfo validity = (ValidityPreCompInfo)Curve.Precompute(this, ValidityPreCompInfo.PRECOMP_NAME, callback);            return !validity.HasFailed();        }        public virtual ECPoint ScaleX(ECFieldElement scale)        {            return IsInfinity                ? this                : Curve.CreateRawPoint(RawXCoord.Multiply(scale), RawYCoord, RawZCoords, IsCompressed);        }        public virtual ECPoint ScaleY(ECFieldElement scale)        {            return IsInfinity                ? this                : Curve.CreateRawPoint(RawXCoord, RawYCoord.Multiply(scale), RawZCoords, IsCompressed);        }        public override bool Equals(object obj)        {            return Equals(obj as ECPoint);        }        public virtual bool Equals(ECPoint other)        {            if (this == other)                return true;            if (null == other)                return false;            ECCurve c1 = this.Curve, c2 = other.Curve;            bool n1 = (null == c1), n2 = (null == c2);            bool i1 = IsInfinity, i2 = other.IsInfinity;            if (i1 || i2)            {                return (i1 && i2) && (n1 || n2 || c1.Equals(c2));            }            ECPoint p1 = this, p2 = other;            if (n1 && n2)            {                // Points with null curve are in affine form, so already normalized            }            else if (n1)            {                p2 = p2.Normalize();            }            else if (n2)            {                p1 = p1.Normalize();            }            else if (!c1.Equals(c2))            {                return false;            }            else            {                // TODO Consider just requiring already normalized, to avoid silent performance degradation                ECPoint[] points = new ECPoint[] { this, c1.ImportPoint(p2) };                // TODO This is a little strong, really only requires coZNormalizeAll to get Zs equal                c1.NormalizeAll(points);                p1 = points[0];                p2 = points[1];            }            return p1.XCoord.Equals(p2.XCoord) && p1.YCoord.Equals(p2.YCoord);        }        public override int GetHashCode()        {            ECCurve c = this.Curve;            int hc = (null == c) ? 0 : ~c.GetHashCode();            if (!this.IsInfinity)            {                // TODO Consider just requiring already normalized, to avoid silent performance degradation                ECPoint p = Normalize();                hc ^= p.XCoord.GetHashCode() * 17;                hc ^= p.YCoord.GetHashCode() * 257;            }            return hc;        }        public override string ToString()        {            if (this.IsInfinity)            {                return "INF";            }            StringBuilder sb = new StringBuilder();            sb.Append('(');            sb.Append(RawXCoord);            sb.Append(',');            sb.Append(RawYCoord);            for (int i = 0; i < m_zs.Length; ++i)            {                sb.Append(',');                sb.Append(m_zs[i]);            }            sb.Append(')');            return sb.ToString();        }        public virtual byte[] GetEncoded()        {            return GetEncoded(m_withCompression);        }        public abstract byte[] GetEncoded(bool compressed);        protected internal abstract bool CompressionYTilde { get; }        public abstract ECPoint Add(ECPoint b);        public abstract ECPoint Subtract(ECPoint b);        public abstract ECPoint Negate();        public virtual ECPoint TimesPow2(int e)        {            if (e < 0)                throw new ArgumentException("cannot be negative", "e");            ECPoint p = this;            while (--e >= 0)            {                p = p.Twice();            }            return p;        }        public abstract ECPoint Twice();        public abstract ECPoint Multiply(BigInteger b);        public virtual ECPoint TwicePlus(ECPoint b)        {            return Twice().Add(b);        }        public virtual ECPoint ThreeTimes()        {            return TwicePlus(this);        }        private class ValidityCallback            : IPreCompCallback        {            private readonly ECPoint m_outer;            private readonly bool m_decompressed, m_checkOrder;            internal ValidityCallback(ECPoint outer, bool decompressed, bool checkOrder)            {                this.m_outer = outer;                this.m_decompressed = decompressed;                this.m_checkOrder = checkOrder;            }            public PreCompInfo Precompute(PreCompInfo existing)            {                ValidityPreCompInfo info = existing as ValidityPreCompInfo;                if (info == null)                {                    info = new ValidityPreCompInfo();                }                if (info.HasFailed())                    return info;                if (!info.HasCurveEquationPassed())                {                    if (!m_decompressed && !m_outer.SatisfiesCurveEquation())                    {                        info.ReportFailed();                        return info;                    }                    info.ReportCurveEquationPassed();                }                if (m_checkOrder && !info.HasOrderPassed())                {                    if (!m_outer.SatisfiesOrder())                    {                        info.ReportFailed();                        return info;                    }                    info.ReportOrderPassed();                }                return info;            }        }    }    internal abstract class ECPointBase        : ECPoint    {        protected internal ECPointBase(            ECCurve			curve,            ECFieldElement	x,            ECFieldElement	y,            bool			withCompression)            : base(curve, x, y, withCompression)        {        }        protected internal ECPointBase(ECCurve curve, ECFieldElement x, ECFieldElement y, ECFieldElement[] zs, bool withCompression)            : base(curve, x, y, zs, withCompression)        {        }        /**         * return the field element encoded with point compression. (S 4.3.6)         */        public override byte[] GetEncoded(bool compressed)        {            if (this.IsInfinity)            {                return new byte[1];            }            ECPoint normed = Normalize();            byte[] X = normed.XCoord.GetEncoded();            if (compressed)            {                byte[] PO = new byte[X.Length + 1];                PO[0] = (byte)(normed.CompressionYTilde ? 0x03 : 0x02);                Array.Copy(X, 0, PO, 1, X.Length);                return PO;            }            byte[] Y = normed.YCoord.GetEncoded();            {                byte[] PO = new byte[X.Length + Y.Length + 1];                PO[0] = 0x04;                Array.Copy(X, 0, PO, 1, X.Length);                Array.Copy(Y, 0, PO, X.Length + 1, Y.Length);                return PO;            }        }        /**         * Multiplies this <code>ECPoint</code> by the given number.         * @param k The multiplicator.         * @return <code>k * this</code>.         */        public override ECPoint Multiply(BigInteger k)        {            return this.Curve.GetMultiplier().Multiply(this, k);        }    }    internal abstract class AbstractFpPoint        : ECPointBase    {        protected AbstractFpPoint(ECCurve curve, ECFieldElement x, ECFieldElement y, bool withCompression)            : base(curve, x, y, withCompression)        {        }        protected AbstractFpPoint(ECCurve curve, ECFieldElement x, ECFieldElement y, ECFieldElement[] zs, bool withCompression)            : base(curve, x, y, zs, withCompression)        {        }        protected internal override bool CompressionYTilde        {            get { return this.AffineYCoord.TestBitZero(); }        }        protected override bool SatisfiesCurveEquation()        {            ECFieldElement X = this.RawXCoord, Y = this.RawYCoord, A = Curve.A, B = Curve.B;            ECFieldElement lhs = Y.Square();            switch (CurveCoordinateSystem)            {            case ECCurve.COORD_AFFINE:                break;            case ECCurve.COORD_HOMOGENEOUS:            {                ECFieldElement Z = this.RawZCoords[0];                if (!Z.IsOne)                {                    ECFieldElement Z2 = Z.Square(), Z3 = Z.Multiply(Z2);                    lhs = lhs.Multiply(Z);                    A = A.Multiply(Z2);                    B = B.Multiply(Z3);                }                break;            }            case ECCurve.COORD_JACOBIAN:            case ECCurve.COORD_JACOBIAN_CHUDNOVSKY:            case ECCurve.COORD_JACOBIAN_MODIFIED:            {                ECFieldElement Z = this.RawZCoords[0];                if (!Z.IsOne)                {                    ECFieldElement Z2 = Z.Square(), Z4 = Z2.Square(), Z6 = Z2.Multiply(Z4);                    A = A.Multiply(Z4);                    B = B.Multiply(Z6);                }                break;            }            default:                throw new InvalidOperationException("unsupported coordinate system");            }            ECFieldElement rhs = X.Square().Add(A).Multiply(X).Add(B);            return lhs.Equals(rhs);        }        public override ECPoint Subtract(ECPoint b)        {            if (b.IsInfinity)                return this;            // Add -b            return Add(b.Negate());        }    }    /**     * Elliptic curve points over Fp     */    internal class FpPoint        : AbstractFpPoint    {        /**         * Create a point which encodes without point compression.         *         * @param curve the curve to use         * @param x affine x co-ordinate         * @param y affine y co-ordinate         */        public FpPoint(ECCurve curve, ECFieldElement x, ECFieldElement y)            : this(curve, x, y, false)        {        }        /**         * Create a point that encodes with or without point compression.         *         * @param curve the curve to use         * @param x affine x co-ordinate         * @param y affine y co-ordinate         * @param withCompression if true encode with point compression         */        public FpPoint(ECCurve curve, ECFieldElement x, ECFieldElement y, bool withCompression)            : base(curve, x, y, withCompression)        {            if ((x == null) != (y == null))                throw new ArgumentException("Exactly one of the field elements is null");        }        internal FpPoint(ECCurve curve, ECFieldElement x, ECFieldElement y, ECFieldElement[] zs, bool withCompression)            : base(curve, x, y, zs, withCompression)        {        }        protected override ECPoint Detach()        {            return new FpPoint(null, AffineXCoord, AffineYCoord, false);        }        public override ECFieldElement GetZCoord(int index)        {            if (index == 1 && ECCurve.COORD_JACOBIAN_MODIFIED == this.CurveCoordinateSystem)            {                return GetJacobianModifiedW();            }            return base.GetZCoord(index);        }        // B.3 pg 62        public override ECPoint Add(ECPoint b)        {            if (this.IsInfinity)                return b;            if (b.IsInfinity)                return this;            if (this == b)                return Twice();            ECCurve curve = this.Curve;            int coord = curve.CoordinateSystem;            ECFieldElement X1 = this.RawXCoord, Y1 = this.RawYCoord;            ECFieldElement X2 = b.RawXCoord, Y2 = b.RawYCoord;            switch (coord)            {                case ECCurve.COORD_AFFINE:                {                    ECFieldElement dx = X2.Subtract(X1), dy = Y2.Subtract(Y1);                    if (dx.IsZero)                    {                        if (dy.IsZero)                        {                            // this == b, i.e. this must be doubled                            return Twice();                        }                        // this == -b, i.e. the result is the point at infinity                        return Curve.Infinity;                    }                    ECFieldElement gamma = dy.Divide(dx);                    ECFieldElement X3 = gamma.Square().Subtract(X1).Subtract(X2);                    ECFieldElement Y3 = gamma.Multiply(X1.Subtract(X3)).Subtract(Y1);                    return new FpPoint(Curve, X3, Y3, IsCompressed);                }                case ECCurve.COORD_HOMOGENEOUS:                {                    ECFieldElement Z1 = this.RawZCoords[0];                    ECFieldElement Z2 = b.RawZCoords[0];                    bool Z1IsOne = Z1.IsOne;                    bool Z2IsOne = Z2.IsOne;                    ECFieldElement u1 = Z1IsOne ? Y2 : Y2.Multiply(Z1);                    ECFieldElement u2 = Z2IsOne ? Y1 : Y1.Multiply(Z2);                    ECFieldElement u = u1.Subtract(u2);                    ECFieldElement v1 = Z1IsOne ? X2 : X2.Multiply(Z1);                    ECFieldElement v2 = Z2IsOne ? X1 : X1.Multiply(Z2);                    ECFieldElement v = v1.Subtract(v2);                    // Check if b == this or b == -this                    if (v.IsZero)                    {                        if (u.IsZero)                        {                            // this == b, i.e. this must be doubled                            return this.Twice();                        }                        // this == -b, i.e. the result is the point at infinity                        return curve.Infinity;                    }                    // TODO Optimize for when w == 1                    ECFieldElement w = Z1IsOne ? Z2 : Z2IsOne ? Z1 : Z1.Multiply(Z2);                    ECFieldElement vSquared = v.Square();                    ECFieldElement vCubed = vSquared.Multiply(v);                    ECFieldElement vSquaredV2 = vSquared.Multiply(v2);                    ECFieldElement A = u.Square().Multiply(w).Subtract(vCubed).Subtract(Two(vSquaredV2));                    ECFieldElement X3 = v.Multiply(A);                    ECFieldElement Y3 = vSquaredV2.Subtract(A).MultiplyMinusProduct(u, u2, vCubed);                    ECFieldElement Z3 = vCubed.Multiply(w);                    return new FpPoint(curve, X3, Y3, new ECFieldElement[] { Z3 }, IsCompressed);                }                case ECCurve.COORD_JACOBIAN:                case ECCurve.COORD_JACOBIAN_MODIFIED:                {                    ECFieldElement Z1 = this.RawZCoords[0];                    ECFieldElement Z2 = b.RawZCoords[0];                    bool Z1IsOne = Z1.IsOne;                    ECFieldElement X3, Y3, Z3, Z3Squared = null;                    if (!Z1IsOne && Z1.Equals(Z2))                    {                        // TODO Make this available as public method coZAdd?                        ECFieldElement dx = X1.Subtract(X2), dy = Y1.Subtract(Y2);                        if (dx.IsZero)                        {                            if (dy.IsZero)                            {                                return Twice();                            }                            return curve.Infinity;                        }                        ECFieldElement C = dx.Square();                        ECFieldElement W1 = X1.Multiply(C), W2 = X2.Multiply(C);                        ECFieldElement A1 = W1.Subtract(W2).Multiply(Y1);                        X3 = dy.Square().Subtract(W1).Subtract(W2);                        Y3 = W1.Subtract(X3).Multiply(dy).Subtract(A1);                        Z3 = dx;                        if (Z1IsOne)                        {                            Z3Squared = C;                        }                        else                        {                            Z3 = Z3.Multiply(Z1);                        }                    }                    else                    {                        ECFieldElement Z1Squared, U2, S2;                        if (Z1IsOne)                        {                            Z1Squared = Z1; U2 = X2; S2 = Y2;                        }                        else                        {                            Z1Squared = Z1.Square();                            U2 = Z1Squared.Multiply(X2);                            ECFieldElement Z1Cubed = Z1Squared.Multiply(Z1);                            S2 = Z1Cubed.Multiply(Y2);                        }                        bool Z2IsOne = Z2.IsOne;                        ECFieldElement Z2Squared, U1, S1;                        if (Z2IsOne)                        {                            Z2Squared = Z2; U1 = X1; S1 = Y1;                        }                        else                        {                            Z2Squared = Z2.Square();                            U1 = Z2Squared.Multiply(X1);                            ECFieldElement Z2Cubed = Z2Squared.Multiply(Z2);                            S1 = Z2Cubed.Multiply(Y1);                        }                        ECFieldElement H = U1.Subtract(U2);                        ECFieldElement R = S1.Subtract(S2);                        // Check if b == this or b == -this                        if (H.IsZero)                        {                            if (R.IsZero)                            {                                // this == b, i.e. this must be doubled                                return this.Twice();                            }                            // this == -b, i.e. the result is the point at infinity                            return curve.Infinity;                        }                        ECFieldElement HSquared = H.Square();                        ECFieldElement G = HSquared.Multiply(H);                        ECFieldElement V = HSquared.Multiply(U1);                        X3 = R.Square().Add(G).Subtract(Two(V));                        Y3 = V.Subtract(X3).MultiplyMinusProduct(R, G, S1);                        Z3 = H;                        if (!Z1IsOne)                        {                            Z3 = Z3.Multiply(Z1);                        }                        if (!Z2IsOne)                        {                            Z3 = Z3.Multiply(Z2);                        }                        // Alternative calculation of Z3 using fast square                        //X3 = four(X3);                        //Y3 = eight(Y3);                        //Z3 = doubleProductFromSquares(Z1, Z2, Z1Squared, Z2Squared).Multiply(H);                        if (Z3 == H)                        {                            Z3Squared = HSquared;                        }                    }                    ECFieldElement[] zs;                    if (coord == ECCurve.COORD_JACOBIAN_MODIFIED)                    {                        // TODO If the result will only be used in a subsequent addition, we don't need W3                        ECFieldElement W3 = CalculateJacobianModifiedW(Z3, Z3Squared);                        zs = new ECFieldElement[] { Z3, W3 };                    }                    else                    {                        zs = new ECFieldElement[] { Z3 };                    }                    return new FpPoint(curve, X3, Y3, zs, IsCompressed);                }                default:                {                    throw new InvalidOperationException("unsupported coordinate system");                }            }        }        // B.3 pg 62        public override ECPoint Twice()        {            if (this.IsInfinity)                return this;            ECCurve curve = this.Curve;            ECFieldElement Y1 = this.RawYCoord;            if (Y1.IsZero)                 return curve.Infinity;            int coord = curve.CoordinateSystem;            ECFieldElement X1 = this.RawXCoord;            switch (coord)            {                case ECCurve.COORD_AFFINE:                {                    ECFieldElement X1Squared = X1.Square();                    ECFieldElement gamma = Three(X1Squared).Add(this.Curve.A).Divide(Two(Y1));                    ECFieldElement X3 = gamma.Square().Subtract(Two(X1));                    ECFieldElement Y3 = gamma.Multiply(X1.Subtract(X3)).Subtract(Y1);                    return new FpPoint(Curve, X3, Y3, IsCompressed);                }                case ECCurve.COORD_HOMOGENEOUS:                {                    ECFieldElement Z1 = this.RawZCoords[0];                    bool Z1IsOne = Z1.IsOne;                    // TODO Optimize for small negative a4 and -3                    ECFieldElement w = curve.A;                    if (!w.IsZero && !Z1IsOne)                    {                        w = w.Multiply(Z1.Square());                    }                    w = w.Add(Three(X1.Square()));                    ECFieldElement s = Z1IsOne ? Y1 : Y1.Multiply(Z1);                    ECFieldElement t = Z1IsOne ? Y1.Square() : s.Multiply(Y1);                    ECFieldElement B = X1.Multiply(t);                    ECFieldElement _4B = Four(B);                    ECFieldElement h = w.Square().Subtract(Two(_4B));                    ECFieldElement _2s = Two(s);                    ECFieldElement X3 = h.Multiply(_2s);                    ECFieldElement _2t = Two(t);                    ECFieldElement Y3 = _4B.Subtract(h).Multiply(w).Subtract(Two(_2t.Square()));                    ECFieldElement _4sSquared = Z1IsOne ? Two(_2t) : _2s.Square();                    ECFieldElement Z3 = Two(_4sSquared).Multiply(s);                    return new FpPoint(curve, X3, Y3, new ECFieldElement[] { Z3 }, IsCompressed);                }                case ECCurve.COORD_JACOBIAN:                {                    ECFieldElement Z1 = this.RawZCoords[0];                    bool Z1IsOne = Z1.IsOne;                    ECFieldElement Y1Squared = Y1.Square();                    ECFieldElement T = Y1Squared.Square();                    ECFieldElement a4 = curve.A;                    ECFieldElement a4Neg = a4.Negate();                    ECFieldElement M, S;                    if (a4Neg.ToBigInteger().Equals(BigInteger.ValueOf(3)))                    {                        ECFieldElement Z1Squared = Z1IsOne ? Z1 : Z1.Square();                        M = Three(X1.Add(Z1Squared).Multiply(X1.Subtract(Z1Squared)));                        S = Four(Y1Squared.Multiply(X1));                    }                    else                    {                        ECFieldElement X1Squared = X1.Square();                        M = Three(X1Squared);                        if (Z1IsOne)                        {                            M = M.Add(a4);                        }                        else if (!a4.IsZero)                        {                            ECFieldElement Z1Squared = Z1IsOne ? Z1 : Z1.Square();                            ECFieldElement Z1Pow4 = Z1Squared.Square();                            if (a4Neg.BitLength < a4.BitLength)                            {                                M = M.Subtract(Z1Pow4.Multiply(a4Neg));                            }                            else                            {                                M = M.Add(Z1Pow4.Multiply(a4));                            }                        }                        //S = two(doubleProductFromSquares(X1, Y1Squared, X1Squared, T));                        S = Four(X1.Multiply(Y1Squared));                    }                    ECFieldElement X3 = M.Square().Subtract(Two(S));                    ECFieldElement Y3 = S.Subtract(X3).Multiply(M).Subtract(Eight(T));                    ECFieldElement Z3 = Two(Y1);                    if (!Z1IsOne)                    {                        Z3 = Z3.Multiply(Z1);                    }                    // Alternative calculation of Z3 using fast square                    //ECFieldElement Z3 = doubleProductFromSquares(Y1, Z1, Y1Squared, Z1Squared);                    return new FpPoint(curve, X3, Y3, new ECFieldElement[] { Z3 }, IsCompressed);                }                case ECCurve.COORD_JACOBIAN_MODIFIED:                {                    return TwiceJacobianModified(true);                }                default:                {                    throw new InvalidOperationException("unsupported coordinate system");                }            }        }        public override ECPoint TwicePlus(ECPoint b)        {            if (this == b)                return ThreeTimes();            if (this.IsInfinity)                return b;            if (b.IsInfinity)                return Twice();            ECFieldElement Y1 = this.RawYCoord;            if (Y1.IsZero)                return b;            ECCurve curve = this.Curve;            int coord = curve.CoordinateSystem;            switch (coord)            {                case ECCurve.COORD_AFFINE:                {                    ECFieldElement X1 = this.RawXCoord;                    ECFieldElement X2 = b.RawXCoord, Y2 = b.RawYCoord;                    ECFieldElement dx = X2.Subtract(X1), dy = Y2.Subtract(Y1);                    if (dx.IsZero)                    {                        if (dy.IsZero)                        {                            // this == b i.e. the result is 3P                            return ThreeTimes();                        }                        // this == -b, i.e. the result is P                        return this;                    }                    /*                     * Optimized calculation of 2P + Q, as described in "Trading Inversions for                     * Multiplications in Elliptic Curve Cryptography", by Ciet, Joye, Lauter, Montgomery.                     */                    ECFieldElement X = dx.Square(), Y = dy.Square();                    ECFieldElement d = X.Multiply(Two(X1).Add(X2)).Subtract(Y);                    if (d.IsZero)                    {                        return Curve.Infinity;                    }                    ECFieldElement D = d.Multiply(dx);                    ECFieldElement I = D.Invert();                    ECFieldElement L1 = d.Multiply(I).Multiply(dy);                    ECFieldElement L2 = Two(Y1).Multiply(X).Multiply(dx).Multiply(I).Subtract(L1);                    ECFieldElement X4 = (L2.Subtract(L1)).Multiply(L1.Add(L2)).Add(X2);                    ECFieldElement Y4 = (X1.Subtract(X4)).Multiply(L2).Subtract(Y1);                    return new FpPoint(Curve, X4, Y4, IsCompressed);                }                case ECCurve.COORD_JACOBIAN_MODIFIED:                {                    return TwiceJacobianModified(false).Add(b);                }                default:                {                    return Twice().Add(b);                }            }        }        public override ECPoint ThreeTimes()        {            if (this.IsInfinity)                return this;            ECFieldElement Y1 = this.RawYCoord;            if (Y1.IsZero)                return this;            ECCurve curve = this.Curve;            int coord = curve.CoordinateSystem;            switch (coord)            {                case ECCurve.COORD_AFFINE:                {                    ECFieldElement X1 = this.RawXCoord;                    ECFieldElement _2Y1 = Two(Y1);                    ECFieldElement X = _2Y1.Square();                    ECFieldElement Z = Three(X1.Square()).Add(Curve.A);                    ECFieldElement Y = Z.Square();                    ECFieldElement d = Three(X1).Multiply(X).Subtract(Y);                    if (d.IsZero)                    {                        return Curve.Infinity;                    }                    ECFieldElement D = d.Multiply(_2Y1);                    ECFieldElement I = D.Invert();                    ECFieldElement L1 = d.Multiply(I).Multiply(Z);                    ECFieldElement L2 = X.Square().Multiply(I).Subtract(L1);                    ECFieldElement X4 = (L2.Subtract(L1)).Multiply(L1.Add(L2)).Add(X1);                    ECFieldElement Y4 = (X1.Subtract(X4)).Multiply(L2).Subtract(Y1);                    return new FpPoint(Curve, X4, Y4, IsCompressed);                }                case ECCurve.COORD_JACOBIAN_MODIFIED:                {                    return TwiceJacobianModified(false).Add(this);                }                default:                {                    // NOTE: Be careful about recursions between TwicePlus and ThreeTimes                    return Twice().Add(this);                }            }        }        public override ECPoint TimesPow2(int e)        {            if (e < 0)                throw new ArgumentException("cannot be negative", "e");            if (e == 0 || this.IsInfinity)                return this;            if (e == 1)                return Twice();            ECCurve curve = this.Curve;            ECFieldElement Y1 = this.RawYCoord;            if (Y1.IsZero)                 return curve.Infinity;            int coord = curve.CoordinateSystem;            ECFieldElement W1 = curve.A;            ECFieldElement X1 = this.RawXCoord;            ECFieldElement Z1 = this.RawZCoords.Length < 1 ? curve.FromBigInteger(BigInteger.One) : this.RawZCoords[0];            if (!Z1.IsOne)            {                switch (coord)                {                case ECCurve.COORD_HOMOGENEOUS:                    ECFieldElement Z1Sq = Z1.Square();                    X1 = X1.Multiply(Z1);                    Y1 = Y1.Multiply(Z1Sq);                    W1 = CalculateJacobianModifiedW(Z1, Z1Sq);                    break;                case ECCurve.COORD_JACOBIAN:                    W1 = CalculateJacobianModifiedW(Z1, null);                    break;                case ECCurve.COORD_JACOBIAN_MODIFIED:                    W1 = GetJacobianModifiedW();                    break;                }            }            for (int i = 0; i < e; ++i)            {                if (Y1.IsZero)                     return curve.Infinity;                ECFieldElement X1Squared = X1.Square();                ECFieldElement M = Three(X1Squared);                ECFieldElement _2Y1 = Two(Y1);                ECFieldElement _2Y1Squared = _2Y1.Multiply(Y1);                ECFieldElement S = Two(X1.Multiply(_2Y1Squared));                ECFieldElement _4T = _2Y1Squared.Square();                ECFieldElement _8T = Two(_4T);                if (!W1.IsZero)                {                    M = M.Add(W1);                    W1 = Two(_8T.Multiply(W1));                }                X1 = M.Square().Subtract(Two(S));                Y1 = M.Multiply(S.Subtract(X1)).Subtract(_8T);                Z1 = Z1.IsOne ? _2Y1 : _2Y1.Multiply(Z1);            }            switch (coord)            {            case ECCurve.COORD_AFFINE:                ECFieldElement zInv = Z1.Invert(), zInv2 = zInv.Square(), zInv3 = zInv2.Multiply(zInv);                return new FpPoint(curve, X1.Multiply(zInv2), Y1.Multiply(zInv3), IsCompressed);            case ECCurve.COORD_HOMOGENEOUS:                X1 = X1.Multiply(Z1);                Z1 = Z1.Multiply(Z1.Square());                return new FpPoint(curve, X1, Y1, new ECFieldElement[] { Z1 }, IsCompressed);            case ECCurve.COORD_JACOBIAN:                return new FpPoint(curve, X1, Y1, new ECFieldElement[] { Z1 }, IsCompressed);            case ECCurve.COORD_JACOBIAN_MODIFIED:                return new FpPoint(curve, X1, Y1, new ECFieldElement[] { Z1, W1 }, IsCompressed);            default:                throw new InvalidOperationException("unsupported coordinate system");            }        }        protected virtual ECFieldElement Two(ECFieldElement x)        {            return x.Add(x);        }        protected virtual ECFieldElement Three(ECFieldElement x)        {            return Two(x).Add(x);        }        protected virtual ECFieldElement Four(ECFieldElement x)        {            return Two(Two(x));        }        protected virtual ECFieldElement Eight(ECFieldElement x)        {            return Four(Two(x));        }        protected virtual ECFieldElement DoubleProductFromSquares(ECFieldElement a, ECFieldElement b,            ECFieldElement aSquared, ECFieldElement bSquared)        {            /*             * NOTE: If squaring in the field is faster than multiplication, then this is a quicker             * way to calculate 2.A.B, if A^2 and B^2 are already known.             */            return a.Add(b).Square().Subtract(aSquared).Subtract(bSquared);        }        public override ECPoint Negate()        {            if (IsInfinity)                return this;            ECCurve curve = Curve;            int coord = curve.CoordinateSystem;            if (ECCurve.COORD_AFFINE != coord)            {                return new FpPoint(curve, RawXCoord, RawYCoord.Negate(), RawZCoords, IsCompressed);            }            return new FpPoint(curve, RawXCoord, RawYCoord.Negate(), IsCompressed);        }        protected virtual ECFieldElement CalculateJacobianModifiedW(ECFieldElement Z, ECFieldElement ZSquared)        {            ECFieldElement a4 = this.Curve.A;            if (a4.IsZero || Z.IsOne)                return a4;            if (ZSquared == null)            {                ZSquared = Z.Square();            }            ECFieldElement W = ZSquared.Square();            ECFieldElement a4Neg = a4.Negate();            if (a4Neg.BitLength < a4.BitLength)            {                W = W.Multiply(a4Neg).Negate();            }            else            {                W = W.Multiply(a4);            }            return W;        }        protected virtual ECFieldElement GetJacobianModifiedW()        {            ECFieldElement[] ZZ = this.RawZCoords;            ECFieldElement W = ZZ[1];            if (W == null)            {                // NOTE: Rarely, TwicePlus will result in the need for a lazy W1 calculation here                ZZ[1] = W = CalculateJacobianModifiedW(ZZ[0], null);            }            return W;        }        protected virtual FpPoint TwiceJacobianModified(bool calculateW)        {            ECFieldElement X1 = this.RawXCoord, Y1 = this.RawYCoord, Z1 = this.RawZCoords[0], W1 = GetJacobianModifiedW();            ECFieldElement X1Squared = X1.Square();            ECFieldElement M = Three(X1Squared).Add(W1);            ECFieldElement _2Y1 = Two(Y1);            ECFieldElement _2Y1Squared = _2Y1.Multiply(Y1);            ECFieldElement S = Two(X1.Multiply(_2Y1Squared));            ECFieldElement X3 = M.Square().Subtract(Two(S));            ECFieldElement _4T = _2Y1Squared.Square();            ECFieldElement _8T = Two(_4T);            ECFieldElement Y3 = M.Multiply(S.Subtract(X3)).Subtract(_8T);            ECFieldElement W3 = calculateW ? Two(_8T.Multiply(W1)) : null;            ECFieldElement Z3 = Z1.IsOne ? _2Y1 : _2Y1.Multiply(Z1);            return new FpPoint(this.Curve, X3, Y3, new ECFieldElement[] { Z3, W3 }, IsCompressed);        }    }    internal abstract class AbstractF2mPoint         : ECPointBase    {        protected AbstractF2mPoint(ECCurve curve, ECFieldElement x, ECFieldElement y, bool withCompression)            : base(curve, x, y, withCompression)        {        }        protected AbstractF2mPoint(ECCurve curve, ECFieldElement x, ECFieldElement y, ECFieldElement[] zs, bool withCompression)            : base(curve, x, y, zs, withCompression)        {        }        protected override bool SatisfiesCurveEquation()        {            ECCurve curve = Curve;            ECFieldElement X = this.RawXCoord, Y = this.RawYCoord, A = curve.A, B = curve.B;            ECFieldElement lhs, rhs;            int coord = curve.CoordinateSystem;            if (coord == ECCurve.COORD_LAMBDA_PROJECTIVE)            {                ECFieldElement Z = this.RawZCoords[0];                bool ZIsOne = Z.IsOne;                if (X.IsZero)                {                    // NOTE: For x == 0, we expect the affine-y instead of the lambda-y                     lhs = Y.Square();                    rhs = B;                    if (!ZIsOne)                    {                        ECFieldElement Z2 = Z.Square();                        rhs = rhs.Multiply(Z2);                    }                }                else                {                    ECFieldElement L = Y, X2 = X.Square();                    if (ZIsOne)                    {                        lhs = L.Square().Add(L).Add(A);                        rhs = X2.Square().Add(B);                    }                    else                    {                        ECFieldElement Z2 = Z.Square(), Z4 = Z2.Square();                        lhs = L.Add(Z).MultiplyPlusProduct(L, A, Z2);                        // TODO If sqrt(b) is precomputed this can be simplified to a single square                        rhs = X2.SquarePlusProduct(B, Z4);                    }                    lhs = lhs.Multiply(X2);                }            }            else            {                lhs = Y.Add(X).Multiply(Y);                switch (coord)                {                    case ECCurve.COORD_AFFINE:                        break;                    case ECCurve.COORD_HOMOGENEOUS:                        {                            ECFieldElement Z = this.RawZCoords[0];                            if (!Z.IsOne)                            {                                ECFieldElement Z2 = Z.Square(), Z3 = Z.Multiply(Z2);                                lhs = lhs.Multiply(Z);                                A = A.Multiply(Z);                                B = B.Multiply(Z3);                            }                            break;                        }                    default:                        throw new InvalidOperationException("unsupported coordinate system");                }                rhs = X.Add(A).Multiply(X.Square()).Add(B);            }            return lhs.Equals(rhs);        }        protected override bool SatisfiesOrder()        {            ECCurve curve = Curve;            BigInteger cofactor = curve.Cofactor;            if (BigInteger.Two.Equals(cofactor))            {                /*                 *  Check that the trace of (X + A) is 0, then there exists a solution to L^2 + L = X + A,                 *  and so a halving is possible, so this point is the double of another.                   */                ECPoint N = this.Normalize();                ECFieldElement X = N.AffineXCoord;                ECFieldElement rhs = X.Add(curve.A);                return ((AbstractF2mFieldElement)rhs).Trace() == 0;            }            if (BigInteger.ValueOf(4).Equals(cofactor))            {                /*                 * Solve L^2 + L = X + A to find the half of this point, if it exists (fail if not).                 * Generate both possibilities for the square of the half-point's x-coordinate (w),                 * and check if Tr(w + A) == 0 for at least one; then a second halving is possible                 * (see comments for cofactor 2 above), so this point is four times another.                 *                  * Note: Tr(x^2) == Tr(x).                  */                ECPoint N = this.Normalize();                ECFieldElement X = N.AffineXCoord;                ECFieldElement lambda = ((AbstractF2mCurve)curve).SolveQuadraticEquation(X.Add(curve.A));                if (lambda == null)                    return false;                ECFieldElement w = X.Multiply(lambda).Add(N.AffineYCoord);                ECFieldElement t = w.Add(curve.A);                return ((AbstractF2mFieldElement)t).Trace() == 0                    || ((AbstractF2mFieldElement)(t.Add(X))).Trace() == 0;            }            return base.SatisfiesOrder();        }        public override ECPoint ScaleX(ECFieldElement scale)        {            if (this.IsInfinity)                return this;            switch (CurveCoordinateSystem)            {            case ECCurve.COORD_LAMBDA_AFFINE:            {                // Y is actually Lambda (X + Y/X) here                ECFieldElement X = RawXCoord, L = RawYCoord;                ECFieldElement X2 = X.Multiply(scale);                ECFieldElement L2 = L.Add(X).Divide(scale).Add(X2);                return Curve.CreateRawPoint(X, L2, RawZCoords, IsCompressed);            }            case ECCurve.COORD_LAMBDA_PROJECTIVE:            {                // Y is actually Lambda (X + Y/X) here                ECFieldElement X = RawXCoord, L = RawYCoord, Z = RawZCoords[0];                // We scale the Z coordinate also, to avoid an inversion                ECFieldElement X2 = X.Multiply(scale.Square());                ECFieldElement L2 = L.Add(X).Add(X2);                ECFieldElement Z2 = Z.Multiply(scale);                return Curve.CreateRawPoint(X, L2, new ECFieldElement[] { Z2 }, IsCompressed);            }            default:            {                return base.ScaleX(scale);            }            }        }        public override ECPoint ScaleY(ECFieldElement scale)        {            if (this.IsInfinity)                return this;            switch (CurveCoordinateSystem)            {            case ECCurve.COORD_LAMBDA_AFFINE:            case ECCurve.COORD_LAMBDA_PROJECTIVE:            {                ECFieldElement X = RawXCoord, L = RawYCoord;                // Y is actually Lambda (X + Y/X) here                ECFieldElement L2 = L.Add(X).Multiply(scale).Add(X);                return Curve.CreateRawPoint(X, L2, RawZCoords, IsCompressed);            }            default:            {                return base.ScaleY(scale);            }            }        }        public override ECPoint Subtract(ECPoint b)        {            if (b.IsInfinity)                return this;            // Add -b            return Add(b.Negate());        }        public virtual AbstractF2mPoint Tau()        {            if (this.IsInfinity)                return this;            ECCurve curve = this.Curve;            int coord = curve.CoordinateSystem;            ECFieldElement X1 = this.RawXCoord;            switch (coord)            {            case ECCurve.COORD_AFFINE:            case ECCurve.COORD_LAMBDA_AFFINE:            {                ECFieldElement Y1 = this.RawYCoord;                return (AbstractF2mPoint)curve.CreateRawPoint(X1.Square(), Y1.Square(), IsCompressed);            }            case ECCurve.COORD_HOMOGENEOUS:            case ECCurve.COORD_LAMBDA_PROJECTIVE:            {                ECFieldElement Y1 = this.RawYCoord, Z1 = this.RawZCoords[0];                return (AbstractF2mPoint)curve.CreateRawPoint(X1.Square(), Y1.Square(),                    new ECFieldElement[] { Z1.Square() }, IsCompressed);            }            default:            {                throw new InvalidOperationException("unsupported coordinate system");            }            }        }        public virtual AbstractF2mPoint TauPow(int pow)        {            if (this.IsInfinity)                return this;            ECCurve curve = this.Curve;            int coord = curve.CoordinateSystem;            ECFieldElement X1 = this.RawXCoord;            switch (coord)            {            case ECCurve.COORD_AFFINE:            case ECCurve.COORD_LAMBDA_AFFINE:            {                ECFieldElement Y1 = this.RawYCoord;                return (AbstractF2mPoint)curve.CreateRawPoint(X1.SquarePow(pow), Y1.SquarePow(pow), IsCompressed);            }            case ECCurve.COORD_HOMOGENEOUS:            case ECCurve.COORD_LAMBDA_PROJECTIVE:            {                ECFieldElement Y1 = this.RawYCoord, Z1 = this.RawZCoords[0];                return (AbstractF2mPoint)curve.CreateRawPoint(X1.SquarePow(pow), Y1.SquarePow(pow),                    new ECFieldElement[] { Z1.SquarePow(pow) }, IsCompressed);            }            default:            {                throw new InvalidOperationException("unsupported coordinate system");            }            }        }    }    /**     * Elliptic curve points over F2m     */    internal class F2mPoint        : AbstractF2mPoint    {        /**         * @param curve base curve         * @param x x point         * @param y y point         */        public F2mPoint(            ECCurve			curve,            ECFieldElement	x,            ECFieldElement	y)            :  this(curve, x, y, false)        {        }        /**         * @param curve base curve         * @param x x point         * @param y y point         * @param withCompression true if encode with point compression.         */        public F2mPoint(            ECCurve			curve,            ECFieldElement	x,            ECFieldElement	y,            bool			withCompression)            : base(curve, x, y, withCompression)        {            if ((x == null) != (y == null))            {                throw new ArgumentException("Exactly one of the field elements is null");            }            if (x != null)            {                // Check if x and y are elements of the same field                F2mFieldElement.CheckFieldElements(x, y);                // Check if x and a are elements of the same field                if (curve != null)                {                    F2mFieldElement.CheckFieldElements(x, curve.A);                }            }        }        internal F2mPoint(ECCurve curve, ECFieldElement x, ECFieldElement y, ECFieldElement[] zs, bool withCompression)            : base(curve, x, y, zs, withCompression)        {        }        protected override ECPoint Detach()        {            return new F2mPoint(null, AffineXCoord, AffineYCoord, false);        }        public override ECFieldElement YCoord        {            get            {                int coord = this.CurveCoordinateSystem;                switch (coord)                {                    case ECCurve.COORD_LAMBDA_AFFINE:                    case ECCurve.COORD_LAMBDA_PROJECTIVE:                    {                        ECFieldElement X = RawXCoord, L = RawYCoord;                        if (this.IsInfinity || X.IsZero)                            return L;                        // Y is actually Lambda (X + Y/X) here; convert to affine value on the fly                        ECFieldElement Y = L.Add(X).Multiply(X);                        if (ECCurve.COORD_LAMBDA_PROJECTIVE == coord)                        {                            ECFieldElement Z = RawZCoords[0];                            if (!Z.IsOne)                            {                                Y = Y.Divide(Z);                            }                        }                        return Y;                    }                    default:                    {                        return RawYCoord;                    }                }            }        }        protected internal override bool CompressionYTilde        {            get            {                ECFieldElement X = this.RawXCoord;                if (X.IsZero)                {                    return false;                }                ECFieldElement Y = this.RawYCoord;                switch (this.CurveCoordinateSystem)                {                    case ECCurve.COORD_LAMBDA_AFFINE:                    case ECCurve.COORD_LAMBDA_PROJECTIVE:                    {                        // Y is actually Lambda (X + Y/X) here                        return Y.TestBitZero() != X.TestBitZero();                    }                    default:                    {                        return Y.Divide(X).TestBitZero();                    }                }            }        }        public override ECPoint Add(ECPoint b)        {            if (this.IsInfinity)                return b;            if (b.IsInfinity)                return this;            ECCurve curve = this.Curve;            int coord = curve.CoordinateSystem;            ECFieldElement X1 = this.RawXCoord;            ECFieldElement X2 = b.RawXCoord;            switch (coord)            {                case ECCurve.COORD_AFFINE:                {                    ECFieldElement Y1 = this.RawYCoord;                    ECFieldElement Y2 = b.RawYCoord;                    ECFieldElement dx = X1.Add(X2), dy = Y1.Add(Y2);                    if (dx.IsZero)                    {                        if (dy.IsZero)                        {                            return Twice();                        }                        return curve.Infinity;                    }                    ECFieldElement L = dy.Divide(dx);                    ECFieldElement X3 = L.Square().Add(L).Add(dx).Add(curve.A);                    ECFieldElement Y3 = L.Multiply(X1.Add(X3)).Add(X3).Add(Y1);                    return new F2mPoint(curve, X3, Y3, IsCompressed);                }                case ECCurve.COORD_HOMOGENEOUS:                {                    ECFieldElement Y1 = this.RawYCoord, Z1 = this.RawZCoords[0];                    ECFieldElement Y2 = b.RawYCoord, Z2 = b.RawZCoords[0];                    bool Z1IsOne = Z1.IsOne;                    ECFieldElement U1 = Y2, V1 = X2;                    if (!Z1IsOne)                    {                        U1 = U1.Multiply(Z1);                        V1 = V1.Multiply(Z1);                    }                    bool Z2IsOne = Z2.IsOne;                    ECFieldElement U2 = Y1, V2 = X1;                    if (!Z2IsOne)                    {                        U2 = U2.Multiply(Z2);                        V2 = V2.Multiply(Z2);                    }                    ECFieldElement U = U1.Add(U2);                    ECFieldElement V = V1.Add(V2);                    if (V.IsZero)                    {                        if (U.IsZero)                        {                            return Twice();                        }                        return curve.Infinity;                    }                    ECFieldElement VSq = V.Square();                    ECFieldElement VCu = VSq.Multiply(V);                    ECFieldElement W = Z1IsOne ? Z2 : Z2IsOne ? Z1 : Z1.Multiply(Z2);                    ECFieldElement uv = U.Add(V);                    ECFieldElement A = uv.MultiplyPlusProduct(U, VSq, curve.A).Multiply(W).Add(VCu);                    ECFieldElement X3 = V.Multiply(A);                    ECFieldElement VSqZ2 = Z2IsOne ? VSq : VSq.Multiply(Z2);                    ECFieldElement Y3 = U.MultiplyPlusProduct(X1, V, Y1).MultiplyPlusProduct(VSqZ2, uv, A);                    ECFieldElement Z3 = VCu.Multiply(W);                    return new F2mPoint(curve, X3, Y3, new ECFieldElement[] { Z3 }, IsCompressed);                }                case ECCurve.COORD_LAMBDA_PROJECTIVE:                {                    if (X1.IsZero)                    {                        if (X2.IsZero)                            return curve.Infinity;                        return b.Add(this);                    }                    ECFieldElement L1 = this.RawYCoord, Z1 = this.RawZCoords[0];                    ECFieldElement L2 = b.RawYCoord, Z2 = b.RawZCoords[0];                    bool Z1IsOne = Z1.IsOne;                    ECFieldElement U2 = X2, S2 = L2;                    if (!Z1IsOne)                    {                        U2 = U2.Multiply(Z1);                        S2 = S2.Multiply(Z1);                    }                    bool Z2IsOne = Z2.IsOne;                    ECFieldElement U1 = X1, S1 = L1;                    if (!Z2IsOne)                    {                        U1 = U1.Multiply(Z2);                        S1 = S1.Multiply(Z2);                    }                    ECFieldElement A = S1.Add(S2);                    ECFieldElement B = U1.Add(U2);                    if (B.IsZero)                    {                        if (A.IsZero)                        {                            return Twice();                        }                        return curve.Infinity;                    }                    ECFieldElement X3, L3, Z3;                    if (X2.IsZero)                    {                        // TODO This can probably be optimized quite a bit                        ECPoint p = this.Normalize();                        X1 = p.RawXCoord;                        ECFieldElement Y1 = p.YCoord;                        ECFieldElement Y2 = L2;                        ECFieldElement L = Y1.Add(Y2).Divide(X1);                        X3 = L.Square().Add(L).Add(X1).Add(curve.A);                        if (X3.IsZero)                        {                            return new F2mPoint(curve, X3, curve.B.Sqrt(), IsCompressed);                        }                        ECFieldElement Y3 = L.Multiply(X1.Add(X3)).Add(X3).Add(Y1);                        L3 = Y3.Divide(X3).Add(X3);                        Z3 = curve.FromBigInteger(BigInteger.One);                    }                    else                    {                        B = B.Square();                        ECFieldElement AU1 = A.Multiply(U1);                        ECFieldElement AU2 = A.Multiply(U2);                        X3 = AU1.Multiply(AU2);                        if (X3.IsZero)                        {                            return new F2mPoint(curve, X3, curve.B.Sqrt(), IsCompressed);                        }                        ECFieldElement ABZ2 = A.Multiply(B);                        if (!Z2IsOne)                        {                            ABZ2 = ABZ2.Multiply(Z2);                        }                        L3 = AU2.Add(B).SquarePlusProduct(ABZ2, L1.Add(Z1));                        Z3 = ABZ2;                        if (!Z1IsOne)                        {                            Z3 = Z3.Multiply(Z1);                        }                    }                    return new F2mPoint(curve, X3, L3, new ECFieldElement[] { Z3 }, IsCompressed);                }                default:                {                    throw new InvalidOperationException("unsupported coordinate system");                }            }        }        /* (non-Javadoc)         * @see Org.BouncyCastle.Math.EC.ECPoint#twice()         */        public override ECPoint Twice()        {            if (this.IsInfinity)                return this;            ECCurve curve = this.Curve;            ECFieldElement X1 = this.RawXCoord;            if (X1.IsZero)            {                // A point with X == 0 is it's own additive inverse                return curve.Infinity;            }            int coord = curve.CoordinateSystem;            switch (coord)            {                case ECCurve.COORD_AFFINE:                {                    ECFieldElement Y1 = this.RawYCoord;                    ECFieldElement L1 = Y1.Divide(X1).Add(X1);                    ECFieldElement X3 = L1.Square().Add(L1).Add(curve.A);                    ECFieldElement Y3 = X1.SquarePlusProduct(X3, L1.AddOne());                    return new F2mPoint(curve, X3, Y3, IsCompressed);                }                case ECCurve.COORD_HOMOGENEOUS:                {                    ECFieldElement Y1 = this.RawYCoord, Z1 = this.RawZCoords[0];                    bool Z1IsOne = Z1.IsOne;                    ECFieldElement X1Z1 = Z1IsOne ? X1 : X1.Multiply(Z1);                    ECFieldElement Y1Z1 = Z1IsOne ? Y1 : Y1.Multiply(Z1);                    ECFieldElement X1Sq = X1.Square();                    ECFieldElement S = X1Sq.Add(Y1Z1);                    ECFieldElement V = X1Z1;                    ECFieldElement vSquared = V.Square();                    ECFieldElement sv = S.Add(V);                    ECFieldElement h = sv.MultiplyPlusProduct(S, vSquared, curve.A);                    ECFieldElement X3 = V.Multiply(h);                    ECFieldElement Y3 = X1Sq.Square().MultiplyPlusProduct(V, h, sv);                    ECFieldElement Z3 = V.Multiply(vSquared);                    return new F2mPoint(curve, X3, Y3, new ECFieldElement[] { Z3 }, IsCompressed);                }                case ECCurve.COORD_LAMBDA_PROJECTIVE:                {                    ECFieldElement L1 = this.RawYCoord, Z1 = this.RawZCoords[0];                    bool Z1IsOne = Z1.IsOne;                    ECFieldElement L1Z1 = Z1IsOne ? L1 : L1.Multiply(Z1);                    ECFieldElement Z1Sq = Z1IsOne ? Z1 : Z1.Square();                    ECFieldElement a = curve.A;                    ECFieldElement aZ1Sq = Z1IsOne ? a : a.Multiply(Z1Sq);                    ECFieldElement T = L1.Square().Add(L1Z1).Add(aZ1Sq);                    if (T.IsZero)                    {                        return new F2mPoint(curve, T, curve.B.Sqrt(), IsCompressed);                    }                    ECFieldElement X3 = T.Square();                    ECFieldElement Z3 = Z1IsOne ? T : T.Multiply(Z1Sq);                    ECFieldElement b = curve.B;                    ECFieldElement L3;                    if (b.BitLength < (curve.FieldSize >> 1))                    {                        ECFieldElement t1 = L1.Add(X1).Square();                        ECFieldElement t2;                        if (b.IsOne)                        {                            t2 = aZ1Sq.Add(Z1Sq).Square();                        }                        else                        {                            // TODO Can be calculated with one square if we pre-compute sqrt(b)                            t2 = aZ1Sq.SquarePlusProduct(b, Z1Sq.Square());                        }                        L3 = t1.Add(T).Add(Z1Sq).Multiply(t1).Add(t2).Add(X3);                        if (a.IsZero)                        {                            L3 = L3.Add(Z3);                        }                        else if (!a.IsOne)                        {                            L3 = L3.Add(a.AddOne().Multiply(Z3));                        }                    }                    else                    {                        ECFieldElement X1Z1 = Z1IsOne ? X1 : X1.Multiply(Z1);                        L3 = X1Z1.SquarePlusProduct(T, L1Z1).Add(X3).Add(Z3);                    }                    return new F2mPoint(curve, X3, L3, new ECFieldElement[] { Z3 }, IsCompressed);                }                default:                {                    throw new InvalidOperationException("unsupported coordinate system");                }            }        }        public override ECPoint TwicePlus(ECPoint b)        {            if (this.IsInfinity)                return b;            if (b.IsInfinity)                return Twice();            ECCurve curve = this.Curve;            ECFieldElement X1 = this.RawXCoord;            if (X1.IsZero)            {                // A point with X == 0 is it's own additive inverse                return b;            }            int coord = curve.CoordinateSystem;            switch (coord)            {                case ECCurve.COORD_LAMBDA_PROJECTIVE:                {                    // NOTE: twicePlus() only optimized for lambda-affine argument                    ECFieldElement X2 = b.RawXCoord, Z2 = b.RawZCoords[0];                    if (X2.IsZero || !Z2.IsOne)                    {                        return Twice().Add(b);                    }                    ECFieldElement L1 = this.RawYCoord, Z1 = this.RawZCoords[0];                    ECFieldElement L2 = b.RawYCoord;                    ECFieldElement X1Sq = X1.Square();                    ECFieldElement L1Sq = L1.Square();                    ECFieldElement Z1Sq = Z1.Square();                    ECFieldElement L1Z1 = L1.Multiply(Z1);                    ECFieldElement T = curve.A.Multiply(Z1Sq).Add(L1Sq).Add(L1Z1);                    ECFieldElement L2plus1 = L2.AddOne();                    ECFieldElement A = curve.A.Add(L2plus1).Multiply(Z1Sq).Add(L1Sq).MultiplyPlusProduct(T, X1Sq, Z1Sq);                    ECFieldElement X2Z1Sq = X2.Multiply(Z1Sq);                    ECFieldElement B = X2Z1Sq.Add(T).Square();                    if (B.IsZero)                    {                        if (A.IsZero)                        {                            return b.Twice();                        }                        return curve.Infinity;                    }                    if (A.IsZero)                    {                        return new F2mPoint(curve, A, curve.B.Sqrt(), IsCompressed);                    }                    ECFieldElement X3 = A.Square().Multiply(X2Z1Sq);                    ECFieldElement Z3 = A.Multiply(B).Multiply(Z1Sq);                    ECFieldElement L3 = A.Add(B).Square().MultiplyPlusProduct(T, L2plus1, Z3);                    return new F2mPoint(curve, X3, L3, new ECFieldElement[] { Z3 }, IsCompressed);                }                default:                {                    return Twice().Add(b);                }            }        }        public override ECPoint Negate()        {            if (this.IsInfinity)                return this;            ECFieldElement X = this.RawXCoord;            if (X.IsZero)                return this;            ECCurve curve = this.Curve;            int coord = curve.CoordinateSystem;            switch (coord)            {                case ECCurve.COORD_AFFINE:                {                    ECFieldElement Y = this.RawYCoord;                    return new F2mPoint(curve, X, Y.Add(X), IsCompressed);                }                case ECCurve.COORD_HOMOGENEOUS:                {                    ECFieldElement Y = this.RawYCoord, Z = this.RawZCoords[0];                    return new F2mPoint(curve, X, Y.Add(X), new ECFieldElement[] { Z }, IsCompressed);                }                case ECCurve.COORD_LAMBDA_AFFINE:                {                    ECFieldElement L = this.RawYCoord;                    return new F2mPoint(curve, X, L.AddOne(), IsCompressed);                }                case ECCurve.COORD_LAMBDA_PROJECTIVE:                {                    // L is actually Lambda (X + Y/X) here                    ECFieldElement L = this.RawYCoord, Z = this.RawZCoords[0];                    return new F2mPoint(curve, X, L.Add(Z), new ECFieldElement[] { Z }, IsCompressed);                }                default:                {                    throw new InvalidOperationException("unsupported coordinate system");                }            }        }    }}
 |