| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513 |
- using System;
- namespace Renci.SshNet.Security.Cryptography.Ciphers
- {
- /// <summary>
- /// Implements Twofish cipher algorithm
- /// </summary>
- public sealed class TwofishCipher : BlockCipher
- {
- /// <summary>
- /// Initializes a new instance of the <see cref="TwofishCipher"/> class.
- /// </summary>
- /// <param name="key">The key.</param>
- /// <param name="mode">The mode.</param>
- /// <param name="padding">The padding.</param>
- /// <exception cref="ArgumentNullException"><paramref name="key"/> is null.</exception>
- /// <exception cref="ArgumentException">Keysize is not valid for this algorithm.</exception>
- public TwofishCipher(byte[] key, CipherMode mode, CipherPadding padding)
- : base(key, 16, mode, padding)
- {
- var keySize = key.Length * 8;
- if (!(keySize == 128 || keySize == 192 || keySize == 256))
- throw new ArgumentException(string.Format("KeySize '{0}' is not valid for this algorithm.", keySize));
- // TODO: Refactor this algorithm
- // calculate the MDS matrix
- var m1 = new int[2];
- var mX = new int[2];
- var mY = new int[2];
- for (var i = 0; i < MAX_KEY_BITS; i++)
- {
- var j = P[0 + i] & 0xff;
- m1[0] = j;
- mX[0] = Mx_X(j) & 0xff;
- mY[0] = Mx_Y(j) & 0xff;
- j = P[(1 * 256) + i] & 0xff;
- m1[1] = j;
- mX[1] = Mx_X(j) & 0xff;
- mY[1] = Mx_Y(j) & 0xff;
- gMDS0[i] = m1[P_00] | mX[P_00] << 8 | mY[P_00] << 16 | mY[P_00] << 24;
- gMDS1[i] = mY[P_10] | mY[P_10] << 8 | mX[P_10] << 16 | m1[P_10] << 24;
- gMDS2[i] = mX[P_20] | mY[P_20] << 8 | m1[P_20] << 16 | mY[P_20] << 24;
- gMDS3[i] = mX[P_30] | m1[P_30] << 8 | mY[P_30] << 16 | mX[P_30] << 24;
- }
- _k64Cnt = key.Length / 8; // pre-padded ?
- SetKey(key);
- }
- /// <summary>
- /// Encrypts the specified region of the input byte array and copies the encrypted data to the specified region of the output byte array.
- /// </summary>
- /// <param name="inputBuffer">The input data to encrypt.</param>
- /// <param name="inputOffset">The offset into the input byte array from which to begin using data.</param>
- /// <param name="inputCount">The number of bytes in the input byte array to use as data.</param>
- /// <param name="outputBuffer">The output to which to write encrypted data.</param>
- /// <param name="outputOffset">The offset into the output byte array from which to begin writing data.</param>
- /// <returns>
- /// The number of bytes encrypted.
- /// </returns>
- public override int EncryptBlock(byte[] inputBuffer, int inputOffset, int inputCount, byte[] outputBuffer, int outputOffset)
- {
- var x0 = BytesTo32Bits(inputBuffer, inputOffset) ^ gSubKeys[INPUT_WHITEN];
- var x1 = BytesTo32Bits(inputBuffer, inputOffset + 4) ^ gSubKeys[INPUT_WHITEN + 1];
- var x2 = BytesTo32Bits(inputBuffer, inputOffset + 8) ^ gSubKeys[INPUT_WHITEN + 2];
- var x3 = BytesTo32Bits(inputBuffer, inputOffset + 12) ^ gSubKeys[INPUT_WHITEN + 3];
- var k = ROUND_SUBKEYS;
- for (var r = 0; r < ROUNDS; r += 2)
- {
- var t0 = Fe32_0(gSBox, x0);
- var t1 = Fe32_3(gSBox, x1);
- x2 ^= t0 + t1 + gSubKeys[k++];
- x2 = (int)((uint)x2 >> 1) | x2 << 31;
- x3 = (x3 << 1 | (int)((uint)x3 >> 31)) ^ (t0 + 2 * t1 + gSubKeys[k++]);
- t0 = Fe32_0(gSBox, x2);
- t1 = Fe32_3(gSBox, x3);
- x0 ^= t0 + t1 + gSubKeys[k++];
- x0 = (int)((uint)x0 >> 1) | x0 << 31;
- x1 = (x1 << 1 | (int)((uint)x1 >> 31)) ^ (t0 + 2 * t1 + gSubKeys[k++]);
- }
- Bits32ToBytes(x2 ^ gSubKeys[OUTPUT_WHITEN], outputBuffer, outputOffset);
- Bits32ToBytes(x3 ^ gSubKeys[OUTPUT_WHITEN + 1], outputBuffer, outputOffset + 4);
- Bits32ToBytes(x0 ^ gSubKeys[OUTPUT_WHITEN + 2], outputBuffer, outputOffset + 8);
- Bits32ToBytes(x1 ^ gSubKeys[OUTPUT_WHITEN + 3], outputBuffer, outputOffset + 12);
- return BlockSize;
- }
- /// <summary>
- /// Decrypts the specified region of the input byte array and copies the decrypted data to the specified region of the output byte array.
- /// </summary>
- /// <param name="inputBuffer">The input data to decrypt.</param>
- /// <param name="inputOffset">The offset into the input byte array from which to begin using data.</param>
- /// <param name="inputCount">The number of bytes in the input byte array to use as data.</param>
- /// <param name="outputBuffer">The output to which to write decrypted data.</param>
- /// <param name="outputOffset">The offset into the output byte array from which to begin writing data.</param>
- /// <returns>
- /// The number of bytes decrypted.
- /// </returns>
- public override int DecryptBlock(byte[] inputBuffer, int inputOffset, int inputCount, byte[] outputBuffer, int outputOffset)
- {
- var x2 = BytesTo32Bits(inputBuffer, inputOffset) ^ gSubKeys[OUTPUT_WHITEN];
- var x3 = BytesTo32Bits(inputBuffer, inputOffset + 4) ^ gSubKeys[OUTPUT_WHITEN + 1];
- var x0 = BytesTo32Bits(inputBuffer, inputOffset + 8) ^ gSubKeys[OUTPUT_WHITEN + 2];
- var x1 = BytesTo32Bits(inputBuffer, inputOffset + 12) ^ gSubKeys[OUTPUT_WHITEN + 3];
- var k = ROUND_SUBKEYS + 2 * ROUNDS - 1;
- for (var r = 0; r < ROUNDS; r += 2)
- {
- var t0 = Fe32_0(gSBox, x2);
- var t1 = Fe32_3(gSBox, x3);
- x1 ^= t0 + 2 * t1 + gSubKeys[k--];
- x0 = (x0 << 1 | (int)((uint)x0 >> 31)) ^ (t0 + t1 + gSubKeys[k--]);
- x1 = (int)((uint)x1 >> 1) | x1 << 31;
- t0 = Fe32_0(gSBox, x0);
- t1 = Fe32_3(gSBox, x1);
- x3 ^= t0 + 2 * t1 + gSubKeys[k--];
- x2 = (x2 << 1 | (int)((uint)x2 >> 31)) ^ (t0 + t1 + gSubKeys[k--]);
- x3 = (int)((uint)x3 >> 1) | x3 << 31;
- }
- Bits32ToBytes(x0 ^ gSubKeys[INPUT_WHITEN], outputBuffer, outputOffset);
- Bits32ToBytes(x1 ^ gSubKeys[INPUT_WHITEN + 1], outputBuffer, outputOffset + 4);
- Bits32ToBytes(x2 ^ gSubKeys[INPUT_WHITEN + 2], outputBuffer, outputOffset + 8);
- Bits32ToBytes(x3 ^ gSubKeys[INPUT_WHITEN + 3], outputBuffer, outputOffset + 12);
- return BlockSize;
- }
- #region Static Definition Tables
- private static readonly byte[] P =
- {
- // p0
- 0xA9, 0x67, 0xB3, 0xE8, 0x04, 0xFD, 0xA3, 0x76, 0x9A, 0x92, 0x80, 0x78, 0xE4, 0xDD, 0xD1, 0x38,
- 0x0D, 0xC6, 0x35, 0x98, 0x18, 0xF7, 0xEC, 0x6C, 0x43, 0x75, 0x37, 0x26, 0xFA, 0x13, 0x94, 0x48,
- 0xF2, 0xD0, 0x8B, 0x30, 0x84, 0x54, 0xDF, 0x23, 0x19, 0x5B, 0x3D, 0x59, 0xF3, 0xAE, 0xA2, 0x82,
- 0x63, 0x01, 0x83, 0x2E, 0xD9, 0x51, 0x9B, 0x7C, 0xA6, 0xEB, 0xA5, 0xBE, 0x16, 0x0C, 0xE3, 0x61,
- 0xC0, 0x8C, 0x3A, 0xF5, 0x73, 0x2C, 0x25, 0x0B, 0xBB, 0x4E, 0x89, 0x6B, 0x53, 0x6A, 0xB4, 0xF1,
- 0xE1, 0xE6, 0xBD, 0x45, 0xE2, 0xF4, 0xB6, 0x66, 0xCC, 0x95, 0x03, 0x56, 0xD4, 0x1C, 0x1E, 0xD7,
- 0xFB, 0xC3, 0x8E, 0xB5, 0xE9, 0xCF, 0xBF, 0xBA, 0xEA, 0x77, 0x39, 0xAF, 0x33, 0xC9, 0x62, 0x71,
- 0x81, 0x79, 0x09, 0xAD, 0x24, 0xCD, 0xF9, 0xD8, 0xE5, 0xC5, 0xB9, 0x4D, 0x44, 0x08, 0x86, 0xE7,
- 0xA1, 0x1D, 0xAA, 0xED, 0x06, 0x70, 0xB2, 0xD2, 0x41, 0x7B, 0xA0, 0x11, 0x31, 0xC2, 0x27, 0x90,
- 0x20, 0xF6, 0x60, 0xFF, 0x96, 0x5C, 0xB1, 0xAB, 0x9E, 0x9C, 0x52, 0x1B, 0x5F, 0x93, 0x0A, 0xEF,
- 0x91, 0x85, 0x49, 0xEE, 0x2D, 0x4F, 0x8F, 0x3B, 0x47, 0x87, 0x6D, 0x46, 0xD6, 0x3E, 0x69, 0x64,
- 0x2A, 0xCE, 0xCB, 0x2F, 0xFC, 0x97, 0x05, 0x7A, 0xAC, 0x7F, 0xD5, 0x1A, 0x4B, 0x0E, 0xA7, 0x5A,
- 0x28, 0x14, 0x3F, 0x29, 0x88, 0x3C, 0x4C, 0x02, 0xB8, 0xDA, 0xB0, 0x17, 0x55, 0x1F, 0x8A, 0x7D,
- 0x57, 0xC7, 0x8D, 0x74, 0xB7, 0xC4, 0x9F, 0x72, 0x7E, 0x15, 0x22, 0x12, 0x58, 0x07, 0x99, 0x34,
- 0x6E, 0x50, 0xDE, 0x68, 0x65, 0xBC, 0xDB, 0xF8, 0xC8, 0xA8, 0x2B, 0x40, 0xDC, 0xFE, 0x32, 0xA4,
- 0xCA, 0x10, 0x21, 0xF0, 0xD3, 0x5D, 0x0F, 0x00, 0x6F, 0x9D, 0x36, 0x42, 0x4A, 0x5E, 0xC1, 0xE0,
- // p1
- 0x75, 0xF3, 0xC6, 0xF4, 0xDB, 0x7B, 0xFB, 0xC8, 0x4A, 0xD3, 0xE6, 0x6B, 0x45, 0x7D, 0xE8, 0x4B,
- 0xD6, 0x32, 0xD8, 0xFD, 0x37, 0x71, 0xF1, 0xE1, 0x30, 0x0F, 0xF8, 0x1B, 0x87, 0xFA, 0x06, 0x3F,
- 0x5E, 0xBA, 0xAE, 0x5B, 0x8A, 0x00, 0xBC, 0x9D, 0x6D, 0xC1, 0xB1, 0x0E, 0x80, 0x5D, 0xD2, 0xD5,
- 0xA0, 0x84, 0x07, 0x14, 0xB5, 0x90, 0x2C, 0xA3, 0xB2, 0x73, 0x4C, 0x54, 0x92, 0x74, 0x36, 0x51,
- 0x38, 0xB0, 0xBD, 0x5A, 0xFC, 0x60, 0x62, 0x96, 0x6C, 0x42, 0xF7, 0x10, 0x7C, 0x28, 0x27, 0x8C,
- 0x13, 0x95, 0x9C, 0xC7, 0x24, 0x46, 0x3B, 0x70, 0xCA, 0xE3, 0x85, 0xCB, 0x11, 0xD0, 0x93, 0xB8,
- 0xA6, 0x83, 0x20, 0xFF, 0x9F, 0x77, 0xC3, 0xCC, 0x03, 0x6F, 0x08, 0xBF, 0x40, 0xE7, 0x2B, 0xE2,
- 0x79, 0x0C, 0xAA, 0x82, 0x41, 0x3A, 0xEA, 0xB9, 0xE4, 0x9A, 0xA4, 0x97, 0x7E, 0xDA, 0x7A, 0x17,
- 0x66, 0x94, 0xA1, 0x1D, 0x3D, 0xF0, 0xDE, 0xB3, 0x0B, 0x72, 0xA7, 0x1C, 0xEF, 0xD1, 0x53, 0x3E,
- 0x8F, 0x33, 0x26, 0x5F, 0xEC, 0x76, 0x2A, 0x49, 0x81, 0x88, 0xEE, 0x21, 0xC4, 0x1A, 0xEB, 0xD9,
- 0xC5, 0x39, 0x99, 0xCD, 0xAD, 0x31, 0x8B, 0x01, 0x18, 0x23, 0xDD, 0x1F, 0x4E, 0x2D, 0xF9, 0x48,
- 0x4F, 0xF2, 0x65, 0x8E, 0x78, 0x5C, 0x58, 0x19, 0x8D, 0xE5, 0x98, 0x57, 0x67, 0x7F, 0x05, 0x64,
- 0xAF, 0x63, 0xB6, 0xFE, 0xF5, 0xB7, 0x3C, 0xA5, 0xCE, 0xE9, 0x68, 0x44, 0xE0, 0x4D, 0x43, 0x69,
- 0x29, 0x2E, 0xAC, 0x15, 0x59, 0xA8, 0x0A, 0x9E, 0x6E, 0x47, 0xDF, 0x34, 0x35, 0x6A, 0xCF, 0xDC,
- 0x22, 0xC9, 0xC0, 0x9B, 0x89, 0xD4, 0xED, 0xAB, 0x12, 0xA2, 0x0D, 0x52, 0xBB, 0x02, 0x2F, 0xA9,
- 0xD7, 0x61, 0x1E, 0xB4, 0x50, 0x04, 0xF6, 0xC2, 0x16, 0x25, 0x86, 0x56, 0x55, 0x09, 0xBE, 0x91
- };
- #endregion
- /**
- * Define the fixed p0/p1 permutations used in keyed S-box lookup.
- * By changing the following constant definitions, the S-boxes will
- * automatically Get changed in the Twofish engine.
- */
- private const int P_00 = 1;
- private const int P_01 = 0;
- private const int P_02 = 0;
- private const int P_03 = P_01 ^ 1;
- private const int P_04 = 1;
- private const int P_10 = 0;
- private const int P_11 = 0;
- private const int P_12 = 1;
- private const int P_13 = P_11 ^ 1;
- private const int P_14 = 0;
- private const int P_20 = 1;
- private const int P_21 = 1;
- private const int P_22 = 0;
- private const int P_23 = P_21 ^ 1;
- private const int P_24 = 0;
- private const int P_30 = 0;
- private const int P_31 = 1;
- private const int P_32 = 1;
- private const int P_33 = P_31 ^ 1;
- private const int P_34 = 1;
- /* Primitive polynomial for GF(256) */
- private const int GF256_FDBK = 0x169;
- private const int GF256_FDBK_2 = GF256_FDBK / 2;
- private const int GF256_FDBK_4 = GF256_FDBK / 4;
- private const int RS_GF_FDBK = 0x14D; // field generator
- //====================================
- // Useful constants
- //====================================
- private const int ROUNDS = 16;
- private const int MAX_ROUNDS = 16; // bytes = 128 bits
- private const int MAX_KEY_BITS = 256;
- private const int INPUT_WHITEN = 0;
- private const int OUTPUT_WHITEN = INPUT_WHITEN + 16 / 4; // 4
- private const int ROUND_SUBKEYS = OUTPUT_WHITEN + 16 / 4;// 8
- private const int TOTAL_SUBKEYS = ROUND_SUBKEYS + 2 * MAX_ROUNDS;// 40
- private const int SK_STEP = 0x02020202;
- private const int SK_BUMP = 0x01010101;
- private const int SK_ROTL = 9;
- private readonly int[] gMDS0 = new int[MAX_KEY_BITS];
- private readonly int[] gMDS1 = new int[MAX_KEY_BITS];
- private readonly int[] gMDS2 = new int[MAX_KEY_BITS];
- private readonly int[] gMDS3 = new int[MAX_KEY_BITS];
- /**
- * gSubKeys[] and gSBox[] are eventually used in the
- * encryption and decryption methods.
- */
- private int[] gSubKeys;
- private int[] gSBox;
- private readonly int _k64Cnt;
- private void SetKey(byte[] key)
- {
- var k32e = new int[MAX_KEY_BITS / 64]; // 4
- var k32o = new int[MAX_KEY_BITS / 64]; // 4
- var sBoxKeys = new int[MAX_KEY_BITS / 64]; // 4
- gSubKeys = new int[TOTAL_SUBKEYS];
- if (_k64Cnt < 1)
- {
- throw new ArgumentException("Key size less than 64 bits");
- }
- if (_k64Cnt > 4)
- {
- throw new ArgumentException("Key size larger than 256 bits");
- }
- /*
- * k64Cnt is the number of 8 byte blocks (64 chunks)
- * that are in the input key. The input key is a
- * maximum of 32 bytes ( 256 bits ), so the range
- * for k64Cnt is 1..4
- */
- for (var i = 0; i < _k64Cnt; i++)
- {
- var p = i * 8;
- k32e[i] = BytesTo32Bits(key, p);
- k32o[i] = BytesTo32Bits(key, p + 4);
- sBoxKeys[_k64Cnt - 1 - i] = RS_MDS_Encode(k32e[i], k32o[i]);
- }
- for (var i = 0; i < TOTAL_SUBKEYS / 2; i++)
- {
- var q = i * SK_STEP;
- var a = F32(q, k32e);
- var b = F32(q + SK_BUMP, k32o);
- b = b << 8 | (int)((uint)b >> 24);
- a += b;
- gSubKeys[i * 2] = a;
- a += b;
- gSubKeys[i * 2 + 1] = a << SK_ROTL | (int)((uint)a >> (32 - SK_ROTL));
- }
- /*
- * fully expand the table for speed
- */
- var k0 = sBoxKeys[0];
- var k1 = sBoxKeys[1];
- var k2 = sBoxKeys[2];
- var k3 = sBoxKeys[3];
- gSBox = new int[4 * MAX_KEY_BITS];
- for (var i = 0; i < MAX_KEY_BITS; i++)
- {
- int b1, b2, b3;
- var b0 = b1 = b2 = b3 = i;
- switch (_k64Cnt & 3)
- {
- case 1:
- gSBox[i * 2] = gMDS0[(P[P_01 * 256 + b0] & 0xff) ^ M_b0(k0)];
- gSBox[i * 2 + 1] = gMDS1[(P[P_11 * 256 + b1] & 0xff) ^ M_b1(k0)];
- gSBox[i * 2 + 0x200] = gMDS2[(P[P_21 * 256 + b2] & 0xff) ^ M_b2(k0)];
- gSBox[i * 2 + 0x201] = gMDS3[(P[P_31 * 256 + b3] & 0xff) ^ M_b3(k0)];
- break;
- case 0: /* 256 bits of key */
- b0 = (P[P_04 * 256 + b0] & 0xff) ^ M_b0(k3);
- b1 = (P[P_14 * 256 + b1] & 0xff) ^ M_b1(k3);
- b2 = (P[P_24 * 256 + b2] & 0xff) ^ M_b2(k3);
- b3 = (P[P_34 * 256 + b3] & 0xff) ^ M_b3(k3);
- goto case 3;
- case 3:
- b0 = (P[P_03 * 256 + b0] & 0xff) ^ M_b0(k2);
- b1 = (P[P_13 * 256 + b1] & 0xff) ^ M_b1(k2);
- b2 = (P[P_23 * 256 + b2] & 0xff) ^ M_b2(k2);
- b3 = (P[P_33 * 256 + b3] & 0xff) ^ M_b3(k2);
- goto case 2;
- case 2:
- gSBox[i * 2] = gMDS0[(P[P_01 * 256 + (P[P_02 * 256 + b0] & 0xff) ^ M_b0(k1)] & 0xff) ^ M_b0(k0)];
- gSBox[i * 2 + 1] = gMDS1[(P[P_11 * 256 + (P[P_12 * 256 + b1] & 0xff) ^ M_b1(k1)] & 0xff) ^ M_b1(k0)];
- gSBox[i * 2 + 0x200] = gMDS2[(P[P_21 * 256 + (P[P_22 * 256 + b2] & 0xff) ^ M_b2(k1)] & 0xff) ^ M_b2(k0)];
- gSBox[i * 2 + 0x201] = gMDS3[(P[P_31 * 256 + (P[P_32 * 256 + b3] & 0xff) ^ M_b3(k1)] & 0xff) ^ M_b3(k0)];
- break;
- }
- }
- /*
- * the function exits having setup the gSBox with the
- * input key material.
- */
- }
- /*
- * TODO: This can be optimised and made cleaner by combining
- * the functionality in this function and applying it appropriately
- * to the creation of the subkeys during key setup.
- */
- private int F32(int x, int[] k32)
- {
- var b0 = M_b0(x);
- var b1 = M_b1(x);
- var b2 = M_b2(x);
- var b3 = M_b3(x);
- var k0 = k32[0];
- var k1 = k32[1];
- var k2 = k32[2];
- var k3 = k32[3];
- var result = 0;
- switch (_k64Cnt & 3)
- {
- case 1:
- result = gMDS0[(P[P_01 * 256 + b0] & 0xff) ^ M_b0(k0)] ^
- gMDS1[(P[P_11 * 256 + b1] & 0xff) ^ M_b1(k0)] ^
- gMDS2[(P[P_21 * 256 + b2] & 0xff) ^ M_b2(k0)] ^
- gMDS3[(P[P_31 * 256 + b3] & 0xff) ^ M_b3(k0)];
- break;
- case 0: /* 256 bits of key */
- b0 = (P[P_04 * 256 + b0] & 0xff) ^ M_b0(k3);
- b1 = (P[P_14 * 256 + b1] & 0xff) ^ M_b1(k3);
- b2 = (P[P_24 * 256 + b2] & 0xff) ^ M_b2(k3);
- b3 = (P[P_34 * 256 + b3] & 0xff) ^ M_b3(k3);
- goto case 3;
- case 3:
- b0 = (P[P_03 * 256 + b0] & 0xff) ^ M_b0(k2);
- b1 = (P[P_13 * 256 + b1] & 0xff) ^ M_b1(k2);
- b2 = (P[P_23 * 256 + b2] & 0xff) ^ M_b2(k2);
- b3 = (P[P_33 * 256 + b3] & 0xff) ^ M_b3(k2);
- goto case 2;
- case 2:
- result =
- gMDS0[(P[P_01 * 256 + (P[P_02 * 256 + b0] & 0xff) ^ M_b0(k1)] & 0xff) ^ M_b0(k0)] ^
- gMDS1[(P[P_11 * 256 + (P[P_12 * 256 + b1] & 0xff) ^ M_b1(k1)] & 0xff) ^ M_b1(k0)] ^
- gMDS2[(P[P_21 * 256 + (P[P_22 * 256 + b2] & 0xff) ^ M_b2(k1)] & 0xff) ^ M_b2(k0)] ^
- gMDS3[(P[P_31 * 256 + (P[P_32 * 256 + b3] & 0xff) ^ M_b3(k1)] & 0xff) ^ M_b3(k0)];
- break;
- }
- return result;
- }
- /**
- * Use (12, 8) Reed-Solomon code over GF(256) to produce
- * a key S-box 32-bit entity from 2 key material 32-bit
- * entities.
- *
- * @param k0 first 32-bit entity
- * @param k1 second 32-bit entity
- * @return Remainder polynomial Generated using RS code
- */
- private static int RS_MDS_Encode(int k0, int k1)
- {
- var r = k1;
- // shift 1 byte at a time
- r = RS_rem(r);
- r = RS_rem(r);
- r = RS_rem(r);
- r = RS_rem(r);
- r ^= k0;
- r = RS_rem(r);
- r = RS_rem(r);
- r = RS_rem(r);
- r = RS_rem(r);
- return r;
- }
- /**
- * Reed-Solomon code parameters: (12,8) reversible code:
- * <p>
- * <pre>
- * G(x) = x^4 + (a+1/a)x^3 + ax^2 + (a+1/a)x + 1
- * </pre>
- * where a = primitive root of field generator 0x14D
- * </p>
- */
- private static int RS_rem(int x)
- {
- var b = (int)(((uint)x >> 24) & 0xff);
- var g2 = ((b << 1) ^
- ((b & 0x80) != 0 ? RS_GF_FDBK : 0)) & 0xff;
- var g3 = ((int)((uint)b >> 1) ^
- ((b & 0x01) != 0 ? (int)((uint)RS_GF_FDBK >> 1) : 0)) ^ g2;
- return ((x << 8) ^ (g3 << 24) ^ (g2 << 16) ^ (g3 << 8) ^ b);
- }
- private static int LFSR1(int x)
- {
- return (x >> 1) ^
- (((x & 0x01) != 0) ? GF256_FDBK_2 : 0);
- }
- private static int LFSR2(int x)
- {
- return (x >> 2) ^
- (((x & 0x02) != 0) ? GF256_FDBK_2 : 0) ^
- (((x & 0x01) != 0) ? GF256_FDBK_4 : 0);
- }
- private static int Mx_X(int x)
- {
- return x ^ LFSR2(x);
- } // 5B
- private static int Mx_Y(int x)
- {
- return x ^ LFSR1(x) ^ LFSR2(x);
- } // EF
- private static int M_b0(int x)
- {
- return x & 0xff;
- }
- private static int M_b1(int x)
- {
- return (int)((uint)x >> 8) & 0xff;
- }
- private static int M_b2(int x)
- {
- return (int)((uint)x >> 16) & 0xff;
- }
- private static int M_b3(int x)
- {
- return (int)((uint)x >> 24) & 0xff;
- }
- private static int Fe32_0(int[] gSBox1, int x)
- {
- return gSBox1[0x000 + 2 * (x & 0xff)] ^
- gSBox1[0x001 + 2 * ((int)((uint)x >> 8) & 0xff)] ^
- gSBox1[0x200 + 2 * ((int)((uint)x >> 16) & 0xff)] ^
- gSBox1[0x201 + 2 * ((int)((uint)x >> 24) & 0xff)];
- }
- private static int Fe32_3(int[] gSBox1, int x)
- {
- return gSBox1[0x000 + 2 * ((int)((uint)x >> 24) & 0xff)] ^
- gSBox1[0x001 + 2 * (x & 0xff)] ^
- gSBox1[0x200 + 2 * ((int)((uint)x >> 8) & 0xff)] ^
- gSBox1[0x201 + 2 * ((int)((uint)x >> 16) & 0xff)];
- }
- private static int BytesTo32Bits(byte[] b, int p)
- {
- return ((b[p] & 0xff)) |
- ((b[p + 1] & 0xff) << 8) |
- ((b[p + 2] & 0xff) << 16) |
- ((b[p + 3] & 0xff) << 24);
- }
- private static void Bits32ToBytes(int inData, byte[] b, int offset)
- {
- b[offset] = (byte)inData;
- b[offset + 1] = (byte)(inData >> 8);
- b[offset + 2] = (byte)(inData >> 16);
- b[offset + 3] = (byte)(inData >> 24);
- }
- }
- }
|