TwofishCipher.cs 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513
  1. using System;
  2. namespace Renci.SshNet.Security.Cryptography.Ciphers
  3. {
  4. /// <summary>
  5. /// Implements Twofish cipher algorithm
  6. /// </summary>
  7. public sealed class TwofishCipher : BlockCipher
  8. {
  9. /// <summary>
  10. /// Initializes a new instance of the <see cref="TwofishCipher"/> class.
  11. /// </summary>
  12. /// <param name="key">The key.</param>
  13. /// <param name="mode">The mode.</param>
  14. /// <param name="padding">The padding.</param>
  15. /// <exception cref="ArgumentNullException"><paramref name="key"/> is null.</exception>
  16. /// <exception cref="ArgumentException">Keysize is not valid for this algorithm.</exception>
  17. public TwofishCipher(byte[] key, CipherMode mode, CipherPadding padding)
  18. : base(key, 16, mode, padding)
  19. {
  20. var keySize = key.Length * 8;
  21. if (!(keySize == 128 || keySize == 192 || keySize == 256))
  22. throw new ArgumentException(string.Format("KeySize '{0}' is not valid for this algorithm.", keySize));
  23. // TODO: Refactor this algorithm
  24. // calculate the MDS matrix
  25. var m1 = new int[2];
  26. var mX = new int[2];
  27. var mY = new int[2];
  28. for (var i = 0; i < MAX_KEY_BITS; i++)
  29. {
  30. var j = P[0 + i] & 0xff;
  31. m1[0] = j;
  32. mX[0] = Mx_X(j) & 0xff;
  33. mY[0] = Mx_Y(j) & 0xff;
  34. j = P[(1 * 256) + i] & 0xff;
  35. m1[1] = j;
  36. mX[1] = Mx_X(j) & 0xff;
  37. mY[1] = Mx_Y(j) & 0xff;
  38. gMDS0[i] = m1[P_00] | mX[P_00] << 8 | mY[P_00] << 16 | mY[P_00] << 24;
  39. gMDS1[i] = mY[P_10] | mY[P_10] << 8 | mX[P_10] << 16 | m1[P_10] << 24;
  40. gMDS2[i] = mX[P_20] | mY[P_20] << 8 | m1[P_20] << 16 | mY[P_20] << 24;
  41. gMDS3[i] = mX[P_30] | m1[P_30] << 8 | mY[P_30] << 16 | mX[P_30] << 24;
  42. }
  43. _k64Cnt = key.Length / 8; // pre-padded ?
  44. SetKey(key);
  45. }
  46. /// <summary>
  47. /// Encrypts the specified region of the input byte array and copies the encrypted data to the specified region of the output byte array.
  48. /// </summary>
  49. /// <param name="inputBuffer">The input data to encrypt.</param>
  50. /// <param name="inputOffset">The offset into the input byte array from which to begin using data.</param>
  51. /// <param name="inputCount">The number of bytes in the input byte array to use as data.</param>
  52. /// <param name="outputBuffer">The output to which to write encrypted data.</param>
  53. /// <param name="outputOffset">The offset into the output byte array from which to begin writing data.</param>
  54. /// <returns>
  55. /// The number of bytes encrypted.
  56. /// </returns>
  57. public override int EncryptBlock(byte[] inputBuffer, int inputOffset, int inputCount, byte[] outputBuffer, int outputOffset)
  58. {
  59. var x0 = BytesTo32Bits(inputBuffer, inputOffset) ^ gSubKeys[INPUT_WHITEN];
  60. var x1 = BytesTo32Bits(inputBuffer, inputOffset + 4) ^ gSubKeys[INPUT_WHITEN + 1];
  61. var x2 = BytesTo32Bits(inputBuffer, inputOffset + 8) ^ gSubKeys[INPUT_WHITEN + 2];
  62. var x3 = BytesTo32Bits(inputBuffer, inputOffset + 12) ^ gSubKeys[INPUT_WHITEN + 3];
  63. var k = ROUND_SUBKEYS;
  64. for (var r = 0; r < ROUNDS; r += 2)
  65. {
  66. var t0 = Fe32_0(gSBox, x0);
  67. var t1 = Fe32_3(gSBox, x1);
  68. x2 ^= t0 + t1 + gSubKeys[k++];
  69. x2 = (int)((uint)x2 >> 1) | x2 << 31;
  70. x3 = (x3 << 1 | (int)((uint)x3 >> 31)) ^ (t0 + 2 * t1 + gSubKeys[k++]);
  71. t0 = Fe32_0(gSBox, x2);
  72. t1 = Fe32_3(gSBox, x3);
  73. x0 ^= t0 + t1 + gSubKeys[k++];
  74. x0 = (int)((uint)x0 >> 1) | x0 << 31;
  75. x1 = (x1 << 1 | (int)((uint)x1 >> 31)) ^ (t0 + 2 * t1 + gSubKeys[k++]);
  76. }
  77. Bits32ToBytes(x2 ^ gSubKeys[OUTPUT_WHITEN], outputBuffer, outputOffset);
  78. Bits32ToBytes(x3 ^ gSubKeys[OUTPUT_WHITEN + 1], outputBuffer, outputOffset + 4);
  79. Bits32ToBytes(x0 ^ gSubKeys[OUTPUT_WHITEN + 2], outputBuffer, outputOffset + 8);
  80. Bits32ToBytes(x1 ^ gSubKeys[OUTPUT_WHITEN + 3], outputBuffer, outputOffset + 12);
  81. return BlockSize;
  82. }
  83. /// <summary>
  84. /// Decrypts the specified region of the input byte array and copies the decrypted data to the specified region of the output byte array.
  85. /// </summary>
  86. /// <param name="inputBuffer">The input data to decrypt.</param>
  87. /// <param name="inputOffset">The offset into the input byte array from which to begin using data.</param>
  88. /// <param name="inputCount">The number of bytes in the input byte array to use as data.</param>
  89. /// <param name="outputBuffer">The output to which to write decrypted data.</param>
  90. /// <param name="outputOffset">The offset into the output byte array from which to begin writing data.</param>
  91. /// <returns>
  92. /// The number of bytes decrypted.
  93. /// </returns>
  94. public override int DecryptBlock(byte[] inputBuffer, int inputOffset, int inputCount, byte[] outputBuffer, int outputOffset)
  95. {
  96. var x2 = BytesTo32Bits(inputBuffer, inputOffset) ^ gSubKeys[OUTPUT_WHITEN];
  97. var x3 = BytesTo32Bits(inputBuffer, inputOffset + 4) ^ gSubKeys[OUTPUT_WHITEN + 1];
  98. var x0 = BytesTo32Bits(inputBuffer, inputOffset + 8) ^ gSubKeys[OUTPUT_WHITEN + 2];
  99. var x1 = BytesTo32Bits(inputBuffer, inputOffset + 12) ^ gSubKeys[OUTPUT_WHITEN + 3];
  100. var k = ROUND_SUBKEYS + 2 * ROUNDS - 1;
  101. for (var r = 0; r < ROUNDS; r += 2)
  102. {
  103. var t0 = Fe32_0(gSBox, x2);
  104. var t1 = Fe32_3(gSBox, x3);
  105. x1 ^= t0 + 2 * t1 + gSubKeys[k--];
  106. x0 = (x0 << 1 | (int)((uint)x0 >> 31)) ^ (t0 + t1 + gSubKeys[k--]);
  107. x1 = (int)((uint)x1 >> 1) | x1 << 31;
  108. t0 = Fe32_0(gSBox, x0);
  109. t1 = Fe32_3(gSBox, x1);
  110. x3 ^= t0 + 2 * t1 + gSubKeys[k--];
  111. x2 = (x2 << 1 | (int)((uint)x2 >> 31)) ^ (t0 + t1 + gSubKeys[k--]);
  112. x3 = (int)((uint)x3 >> 1) | x3 << 31;
  113. }
  114. Bits32ToBytes(x0 ^ gSubKeys[INPUT_WHITEN], outputBuffer, outputOffset);
  115. Bits32ToBytes(x1 ^ gSubKeys[INPUT_WHITEN + 1], outputBuffer, outputOffset + 4);
  116. Bits32ToBytes(x2 ^ gSubKeys[INPUT_WHITEN + 2], outputBuffer, outputOffset + 8);
  117. Bits32ToBytes(x3 ^ gSubKeys[INPUT_WHITEN + 3], outputBuffer, outputOffset + 12);
  118. return BlockSize;
  119. }
  120. #region Static Definition Tables
  121. private static readonly byte[] P =
  122. {
  123. // p0
  124. 0xA9, 0x67, 0xB3, 0xE8, 0x04, 0xFD, 0xA3, 0x76, 0x9A, 0x92, 0x80, 0x78, 0xE4, 0xDD, 0xD1, 0x38,
  125. 0x0D, 0xC6, 0x35, 0x98, 0x18, 0xF7, 0xEC, 0x6C, 0x43, 0x75, 0x37, 0x26, 0xFA, 0x13, 0x94, 0x48,
  126. 0xF2, 0xD0, 0x8B, 0x30, 0x84, 0x54, 0xDF, 0x23, 0x19, 0x5B, 0x3D, 0x59, 0xF3, 0xAE, 0xA2, 0x82,
  127. 0x63, 0x01, 0x83, 0x2E, 0xD9, 0x51, 0x9B, 0x7C, 0xA6, 0xEB, 0xA5, 0xBE, 0x16, 0x0C, 0xE3, 0x61,
  128. 0xC0, 0x8C, 0x3A, 0xF5, 0x73, 0x2C, 0x25, 0x0B, 0xBB, 0x4E, 0x89, 0x6B, 0x53, 0x6A, 0xB4, 0xF1,
  129. 0xE1, 0xE6, 0xBD, 0x45, 0xE2, 0xF4, 0xB6, 0x66, 0xCC, 0x95, 0x03, 0x56, 0xD4, 0x1C, 0x1E, 0xD7,
  130. 0xFB, 0xC3, 0x8E, 0xB5, 0xE9, 0xCF, 0xBF, 0xBA, 0xEA, 0x77, 0x39, 0xAF, 0x33, 0xC9, 0x62, 0x71,
  131. 0x81, 0x79, 0x09, 0xAD, 0x24, 0xCD, 0xF9, 0xD8, 0xE5, 0xC5, 0xB9, 0x4D, 0x44, 0x08, 0x86, 0xE7,
  132. 0xA1, 0x1D, 0xAA, 0xED, 0x06, 0x70, 0xB2, 0xD2, 0x41, 0x7B, 0xA0, 0x11, 0x31, 0xC2, 0x27, 0x90,
  133. 0x20, 0xF6, 0x60, 0xFF, 0x96, 0x5C, 0xB1, 0xAB, 0x9E, 0x9C, 0x52, 0x1B, 0x5F, 0x93, 0x0A, 0xEF,
  134. 0x91, 0x85, 0x49, 0xEE, 0x2D, 0x4F, 0x8F, 0x3B, 0x47, 0x87, 0x6D, 0x46, 0xD6, 0x3E, 0x69, 0x64,
  135. 0x2A, 0xCE, 0xCB, 0x2F, 0xFC, 0x97, 0x05, 0x7A, 0xAC, 0x7F, 0xD5, 0x1A, 0x4B, 0x0E, 0xA7, 0x5A,
  136. 0x28, 0x14, 0x3F, 0x29, 0x88, 0x3C, 0x4C, 0x02, 0xB8, 0xDA, 0xB0, 0x17, 0x55, 0x1F, 0x8A, 0x7D,
  137. 0x57, 0xC7, 0x8D, 0x74, 0xB7, 0xC4, 0x9F, 0x72, 0x7E, 0x15, 0x22, 0x12, 0x58, 0x07, 0x99, 0x34,
  138. 0x6E, 0x50, 0xDE, 0x68, 0x65, 0xBC, 0xDB, 0xF8, 0xC8, 0xA8, 0x2B, 0x40, 0xDC, 0xFE, 0x32, 0xA4,
  139. 0xCA, 0x10, 0x21, 0xF0, 0xD3, 0x5D, 0x0F, 0x00, 0x6F, 0x9D, 0x36, 0x42, 0x4A, 0x5E, 0xC1, 0xE0,
  140. // p1
  141. 0x75, 0xF3, 0xC6, 0xF4, 0xDB, 0x7B, 0xFB, 0xC8, 0x4A, 0xD3, 0xE6, 0x6B, 0x45, 0x7D, 0xE8, 0x4B,
  142. 0xD6, 0x32, 0xD8, 0xFD, 0x37, 0x71, 0xF1, 0xE1, 0x30, 0x0F, 0xF8, 0x1B, 0x87, 0xFA, 0x06, 0x3F,
  143. 0x5E, 0xBA, 0xAE, 0x5B, 0x8A, 0x00, 0xBC, 0x9D, 0x6D, 0xC1, 0xB1, 0x0E, 0x80, 0x5D, 0xD2, 0xD5,
  144. 0xA0, 0x84, 0x07, 0x14, 0xB5, 0x90, 0x2C, 0xA3, 0xB2, 0x73, 0x4C, 0x54, 0x92, 0x74, 0x36, 0x51,
  145. 0x38, 0xB0, 0xBD, 0x5A, 0xFC, 0x60, 0x62, 0x96, 0x6C, 0x42, 0xF7, 0x10, 0x7C, 0x28, 0x27, 0x8C,
  146. 0x13, 0x95, 0x9C, 0xC7, 0x24, 0x46, 0x3B, 0x70, 0xCA, 0xE3, 0x85, 0xCB, 0x11, 0xD0, 0x93, 0xB8,
  147. 0xA6, 0x83, 0x20, 0xFF, 0x9F, 0x77, 0xC3, 0xCC, 0x03, 0x6F, 0x08, 0xBF, 0x40, 0xE7, 0x2B, 0xE2,
  148. 0x79, 0x0C, 0xAA, 0x82, 0x41, 0x3A, 0xEA, 0xB9, 0xE4, 0x9A, 0xA4, 0x97, 0x7E, 0xDA, 0x7A, 0x17,
  149. 0x66, 0x94, 0xA1, 0x1D, 0x3D, 0xF0, 0xDE, 0xB3, 0x0B, 0x72, 0xA7, 0x1C, 0xEF, 0xD1, 0x53, 0x3E,
  150. 0x8F, 0x33, 0x26, 0x5F, 0xEC, 0x76, 0x2A, 0x49, 0x81, 0x88, 0xEE, 0x21, 0xC4, 0x1A, 0xEB, 0xD9,
  151. 0xC5, 0x39, 0x99, 0xCD, 0xAD, 0x31, 0x8B, 0x01, 0x18, 0x23, 0xDD, 0x1F, 0x4E, 0x2D, 0xF9, 0x48,
  152. 0x4F, 0xF2, 0x65, 0x8E, 0x78, 0x5C, 0x58, 0x19, 0x8D, 0xE5, 0x98, 0x57, 0x67, 0x7F, 0x05, 0x64,
  153. 0xAF, 0x63, 0xB6, 0xFE, 0xF5, 0xB7, 0x3C, 0xA5, 0xCE, 0xE9, 0x68, 0x44, 0xE0, 0x4D, 0x43, 0x69,
  154. 0x29, 0x2E, 0xAC, 0x15, 0x59, 0xA8, 0x0A, 0x9E, 0x6E, 0x47, 0xDF, 0x34, 0x35, 0x6A, 0xCF, 0xDC,
  155. 0x22, 0xC9, 0xC0, 0x9B, 0x89, 0xD4, 0xED, 0xAB, 0x12, 0xA2, 0x0D, 0x52, 0xBB, 0x02, 0x2F, 0xA9,
  156. 0xD7, 0x61, 0x1E, 0xB4, 0x50, 0x04, 0xF6, 0xC2, 0x16, 0x25, 0x86, 0x56, 0x55, 0x09, 0xBE, 0x91
  157. };
  158. #endregion
  159. /**
  160. * Define the fixed p0/p1 permutations used in keyed S-box lookup.
  161. * By changing the following constant definitions, the S-boxes will
  162. * automatically Get changed in the Twofish engine.
  163. */
  164. private const int P_00 = 1;
  165. private const int P_01 = 0;
  166. private const int P_02 = 0;
  167. private const int P_03 = P_01 ^ 1;
  168. private const int P_04 = 1;
  169. private const int P_10 = 0;
  170. private const int P_11 = 0;
  171. private const int P_12 = 1;
  172. private const int P_13 = P_11 ^ 1;
  173. private const int P_14 = 0;
  174. private const int P_20 = 1;
  175. private const int P_21 = 1;
  176. private const int P_22 = 0;
  177. private const int P_23 = P_21 ^ 1;
  178. private const int P_24 = 0;
  179. private const int P_30 = 0;
  180. private const int P_31 = 1;
  181. private const int P_32 = 1;
  182. private const int P_33 = P_31 ^ 1;
  183. private const int P_34 = 1;
  184. /* Primitive polynomial for GF(256) */
  185. private const int GF256_FDBK = 0x169;
  186. private const int GF256_FDBK_2 = GF256_FDBK / 2;
  187. private const int GF256_FDBK_4 = GF256_FDBK / 4;
  188. private const int RS_GF_FDBK = 0x14D; // field generator
  189. //====================================
  190. // Useful constants
  191. //====================================
  192. private const int ROUNDS = 16;
  193. private const int MAX_ROUNDS = 16; // bytes = 128 bits
  194. private const int MAX_KEY_BITS = 256;
  195. private const int INPUT_WHITEN = 0;
  196. private const int OUTPUT_WHITEN = INPUT_WHITEN + 16 / 4; // 4
  197. private const int ROUND_SUBKEYS = OUTPUT_WHITEN + 16 / 4;// 8
  198. private const int TOTAL_SUBKEYS = ROUND_SUBKEYS + 2 * MAX_ROUNDS;// 40
  199. private const int SK_STEP = 0x02020202;
  200. private const int SK_BUMP = 0x01010101;
  201. private const int SK_ROTL = 9;
  202. private readonly int[] gMDS0 = new int[MAX_KEY_BITS];
  203. private readonly int[] gMDS1 = new int[MAX_KEY_BITS];
  204. private readonly int[] gMDS2 = new int[MAX_KEY_BITS];
  205. private readonly int[] gMDS3 = new int[MAX_KEY_BITS];
  206. /**
  207. * gSubKeys[] and gSBox[] are eventually used in the
  208. * encryption and decryption methods.
  209. */
  210. private int[] gSubKeys;
  211. private int[] gSBox;
  212. private readonly int _k64Cnt;
  213. private void SetKey(byte[] key)
  214. {
  215. var k32e = new int[MAX_KEY_BITS / 64]; // 4
  216. var k32o = new int[MAX_KEY_BITS / 64]; // 4
  217. var sBoxKeys = new int[MAX_KEY_BITS / 64]; // 4
  218. gSubKeys = new int[TOTAL_SUBKEYS];
  219. if (_k64Cnt < 1)
  220. {
  221. throw new ArgumentException("Key size less than 64 bits");
  222. }
  223. if (_k64Cnt > 4)
  224. {
  225. throw new ArgumentException("Key size larger than 256 bits");
  226. }
  227. /*
  228. * k64Cnt is the number of 8 byte blocks (64 chunks)
  229. * that are in the input key. The input key is a
  230. * maximum of 32 bytes ( 256 bits ), so the range
  231. * for k64Cnt is 1..4
  232. */
  233. for (var i = 0; i < _k64Cnt; i++)
  234. {
  235. var p = i * 8;
  236. k32e[i] = BytesTo32Bits(key, p);
  237. k32o[i] = BytesTo32Bits(key, p + 4);
  238. sBoxKeys[_k64Cnt - 1 - i] = RS_MDS_Encode(k32e[i], k32o[i]);
  239. }
  240. for (var i = 0; i < TOTAL_SUBKEYS / 2; i++)
  241. {
  242. var q = i * SK_STEP;
  243. var a = F32(q, k32e);
  244. var b = F32(q + SK_BUMP, k32o);
  245. b = b << 8 | (int)((uint)b >> 24);
  246. a += b;
  247. gSubKeys[i * 2] = a;
  248. a += b;
  249. gSubKeys[i * 2 + 1] = a << SK_ROTL | (int)((uint)a >> (32 - SK_ROTL));
  250. }
  251. /*
  252. * fully expand the table for speed
  253. */
  254. var k0 = sBoxKeys[0];
  255. var k1 = sBoxKeys[1];
  256. var k2 = sBoxKeys[2];
  257. var k3 = sBoxKeys[3];
  258. gSBox = new int[4 * MAX_KEY_BITS];
  259. for (var i = 0; i < MAX_KEY_BITS; i++)
  260. {
  261. int b1, b2, b3;
  262. var b0 = b1 = b2 = b3 = i;
  263. switch (_k64Cnt & 3)
  264. {
  265. case 1:
  266. gSBox[i * 2] = gMDS0[(P[P_01 * 256 + b0] & 0xff) ^ M_b0(k0)];
  267. gSBox[i * 2 + 1] = gMDS1[(P[P_11 * 256 + b1] & 0xff) ^ M_b1(k0)];
  268. gSBox[i * 2 + 0x200] = gMDS2[(P[P_21 * 256 + b2] & 0xff) ^ M_b2(k0)];
  269. gSBox[i * 2 + 0x201] = gMDS3[(P[P_31 * 256 + b3] & 0xff) ^ M_b3(k0)];
  270. break;
  271. case 0: /* 256 bits of key */
  272. b0 = (P[P_04 * 256 + b0] & 0xff) ^ M_b0(k3);
  273. b1 = (P[P_14 * 256 + b1] & 0xff) ^ M_b1(k3);
  274. b2 = (P[P_24 * 256 + b2] & 0xff) ^ M_b2(k3);
  275. b3 = (P[P_34 * 256 + b3] & 0xff) ^ M_b3(k3);
  276. goto case 3;
  277. case 3:
  278. b0 = (P[P_03 * 256 + b0] & 0xff) ^ M_b0(k2);
  279. b1 = (P[P_13 * 256 + b1] & 0xff) ^ M_b1(k2);
  280. b2 = (P[P_23 * 256 + b2] & 0xff) ^ M_b2(k2);
  281. b3 = (P[P_33 * 256 + b3] & 0xff) ^ M_b3(k2);
  282. goto case 2;
  283. case 2:
  284. gSBox[i * 2] = gMDS0[(P[P_01 * 256 + (P[P_02 * 256 + b0] & 0xff) ^ M_b0(k1)] & 0xff) ^ M_b0(k0)];
  285. gSBox[i * 2 + 1] = gMDS1[(P[P_11 * 256 + (P[P_12 * 256 + b1] & 0xff) ^ M_b1(k1)] & 0xff) ^ M_b1(k0)];
  286. gSBox[i * 2 + 0x200] = gMDS2[(P[P_21 * 256 + (P[P_22 * 256 + b2] & 0xff) ^ M_b2(k1)] & 0xff) ^ M_b2(k0)];
  287. gSBox[i * 2 + 0x201] = gMDS3[(P[P_31 * 256 + (P[P_32 * 256 + b3] & 0xff) ^ M_b3(k1)] & 0xff) ^ M_b3(k0)];
  288. break;
  289. }
  290. }
  291. /*
  292. * the function exits having setup the gSBox with the
  293. * input key material.
  294. */
  295. }
  296. /*
  297. * TODO: This can be optimised and made cleaner by combining
  298. * the functionality in this function and applying it appropriately
  299. * to the creation of the subkeys during key setup.
  300. */
  301. private int F32(int x, int[] k32)
  302. {
  303. var b0 = M_b0(x);
  304. var b1 = M_b1(x);
  305. var b2 = M_b2(x);
  306. var b3 = M_b3(x);
  307. var k0 = k32[0];
  308. var k1 = k32[1];
  309. var k2 = k32[2];
  310. var k3 = k32[3];
  311. var result = 0;
  312. switch (_k64Cnt & 3)
  313. {
  314. case 1:
  315. result = gMDS0[(P[P_01 * 256 + b0] & 0xff) ^ M_b0(k0)] ^
  316. gMDS1[(P[P_11 * 256 + b1] & 0xff) ^ M_b1(k0)] ^
  317. gMDS2[(P[P_21 * 256 + b2] & 0xff) ^ M_b2(k0)] ^
  318. gMDS3[(P[P_31 * 256 + b3] & 0xff) ^ M_b3(k0)];
  319. break;
  320. case 0: /* 256 bits of key */
  321. b0 = (P[P_04 * 256 + b0] & 0xff) ^ M_b0(k3);
  322. b1 = (P[P_14 * 256 + b1] & 0xff) ^ M_b1(k3);
  323. b2 = (P[P_24 * 256 + b2] & 0xff) ^ M_b2(k3);
  324. b3 = (P[P_34 * 256 + b3] & 0xff) ^ M_b3(k3);
  325. goto case 3;
  326. case 3:
  327. b0 = (P[P_03 * 256 + b0] & 0xff) ^ M_b0(k2);
  328. b1 = (P[P_13 * 256 + b1] & 0xff) ^ M_b1(k2);
  329. b2 = (P[P_23 * 256 + b2] & 0xff) ^ M_b2(k2);
  330. b3 = (P[P_33 * 256 + b3] & 0xff) ^ M_b3(k2);
  331. goto case 2;
  332. case 2:
  333. result =
  334. gMDS0[(P[P_01 * 256 + (P[P_02 * 256 + b0] & 0xff) ^ M_b0(k1)] & 0xff) ^ M_b0(k0)] ^
  335. gMDS1[(P[P_11 * 256 + (P[P_12 * 256 + b1] & 0xff) ^ M_b1(k1)] & 0xff) ^ M_b1(k0)] ^
  336. gMDS2[(P[P_21 * 256 + (P[P_22 * 256 + b2] & 0xff) ^ M_b2(k1)] & 0xff) ^ M_b2(k0)] ^
  337. gMDS3[(P[P_31 * 256 + (P[P_32 * 256 + b3] & 0xff) ^ M_b3(k1)] & 0xff) ^ M_b3(k0)];
  338. break;
  339. }
  340. return result;
  341. }
  342. /**
  343. * Use (12, 8) Reed-Solomon code over GF(256) to produce
  344. * a key S-box 32-bit entity from 2 key material 32-bit
  345. * entities.
  346. *
  347. * @param k0 first 32-bit entity
  348. * @param k1 second 32-bit entity
  349. * @return Remainder polynomial Generated using RS code
  350. */
  351. private static int RS_MDS_Encode(int k0, int k1)
  352. {
  353. var r = k1;
  354. // shift 1 byte at a time
  355. r = RS_rem(r);
  356. r = RS_rem(r);
  357. r = RS_rem(r);
  358. r = RS_rem(r);
  359. r ^= k0;
  360. r = RS_rem(r);
  361. r = RS_rem(r);
  362. r = RS_rem(r);
  363. r = RS_rem(r);
  364. return r;
  365. }
  366. /**
  367. * Reed-Solomon code parameters: (12,8) reversible code:
  368. * <p>
  369. * <pre>
  370. * G(x) = x^4 + (a+1/a)x^3 + ax^2 + (a+1/a)x + 1
  371. * </pre>
  372. * where a = primitive root of field generator 0x14D
  373. * </p>
  374. */
  375. private static int RS_rem(int x)
  376. {
  377. var b = (int)(((uint)x >> 24) & 0xff);
  378. var g2 = ((b << 1) ^
  379. ((b & 0x80) != 0 ? RS_GF_FDBK : 0)) & 0xff;
  380. var g3 = ((int)((uint)b >> 1) ^
  381. ((b & 0x01) != 0 ? (int)((uint)RS_GF_FDBK >> 1) : 0)) ^ g2;
  382. return ((x << 8) ^ (g3 << 24) ^ (g2 << 16) ^ (g3 << 8) ^ b);
  383. }
  384. private static int LFSR1(int x)
  385. {
  386. return (x >> 1) ^
  387. (((x & 0x01) != 0) ? GF256_FDBK_2 : 0);
  388. }
  389. private static int LFSR2(int x)
  390. {
  391. return (x >> 2) ^
  392. (((x & 0x02) != 0) ? GF256_FDBK_2 : 0) ^
  393. (((x & 0x01) != 0) ? GF256_FDBK_4 : 0);
  394. }
  395. private static int Mx_X(int x)
  396. {
  397. return x ^ LFSR2(x);
  398. } // 5B
  399. private static int Mx_Y(int x)
  400. {
  401. return x ^ LFSR1(x) ^ LFSR2(x);
  402. } // EF
  403. private static int M_b0(int x)
  404. {
  405. return x & 0xff;
  406. }
  407. private static int M_b1(int x)
  408. {
  409. return (int)((uint)x >> 8) & 0xff;
  410. }
  411. private static int M_b2(int x)
  412. {
  413. return (int)((uint)x >> 16) & 0xff;
  414. }
  415. private static int M_b3(int x)
  416. {
  417. return (int)((uint)x >> 24) & 0xff;
  418. }
  419. private static int Fe32_0(int[] gSBox1, int x)
  420. {
  421. return gSBox1[0x000 + 2 * (x & 0xff)] ^
  422. gSBox1[0x001 + 2 * ((int)((uint)x >> 8) & 0xff)] ^
  423. gSBox1[0x200 + 2 * ((int)((uint)x >> 16) & 0xff)] ^
  424. gSBox1[0x201 + 2 * ((int)((uint)x >> 24) & 0xff)];
  425. }
  426. private static int Fe32_3(int[] gSBox1, int x)
  427. {
  428. return gSBox1[0x000 + 2 * ((int)((uint)x >> 24) & 0xff)] ^
  429. gSBox1[0x001 + 2 * (x & 0xff)] ^
  430. gSBox1[0x200 + 2 * ((int)((uint)x >> 8) & 0xff)] ^
  431. gSBox1[0x201 + 2 * ((int)((uint)x >> 16) & 0xff)];
  432. }
  433. private static int BytesTo32Bits(byte[] b, int p)
  434. {
  435. return ((b[p] & 0xff)) |
  436. ((b[p + 1] & 0xff) << 8) |
  437. ((b[p + 2] & 0xff) << 16) |
  438. ((b[p + 3] & 0xff) << 24);
  439. }
  440. private static void Bits32ToBytes(int inData, byte[] b, int offset)
  441. {
  442. b[offset] = (byte)inData;
  443. b[offset + 1] = (byte)(inData >> 8);
  444. b[offset + 2] = (byte)(inData >> 16);
  445. b[offset + 3] = (byte)(inData >> 24);
  446. }
  447. }
  448. }