TwofishCipher.cs 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614
  1. using System;
  2. using System.Collections.Generic;
  3. using System.Linq;
  4. using System.Text;
  5. namespace Renci.SshNet.Security.Cryptography.Ciphers
  6. {
  7. /// <summary>
  8. /// Implements Twofish cipher algorithm
  9. /// </summary>
  10. public class TwofishCipher : BlockCipher
  11. {
  12. /// <summary>
  13. /// Initializes a new instance of the <see cref="TwofishCipher"/> class.
  14. /// </summary>
  15. /// <param name="key">The key.</param>
  16. /// <param name="mode">The mode.</param>
  17. /// <param name="padding">The padding.</param>
  18. /// <exception cref="ArgumentNullException"><paramref name="key"/> is null.</exception>
  19. /// <exception cref="ArgumentException">Keysize is not valid for this algorithm.</exception>
  20. public TwofishCipher(byte[] key, CipherMode mode, CipherPadding padding)
  21. : base(key, 16, mode, padding)
  22. {
  23. var keySize = key.Length * 8;
  24. if (!(keySize == 128 || keySize == 192 || keySize == 256))
  25. throw new ArgumentException(string.Format("KeySize '{0}' is not valid for this algorithm.", keySize));
  26. // TODO: Refactor this algorithm
  27. // calculate the MDS matrix
  28. int[] m1 = new int[2];
  29. int[] mX = new int[2];
  30. int[] mY = new int[2];
  31. int j;
  32. for (int i = 0; i < MAX_KEY_BITS; i++)
  33. {
  34. j = P[0, i] & 0xff;
  35. m1[0] = j;
  36. mX[0] = Mx_X(j) & 0xff;
  37. mY[0] = Mx_Y(j) & 0xff;
  38. j = P[1, i] & 0xff;
  39. m1[1] = j;
  40. mX[1] = Mx_X(j) & 0xff;
  41. mY[1] = Mx_Y(j) & 0xff;
  42. gMDS0[i] = m1[P_00] | mX[P_00] << 8 | mY[P_00] << 16 | mY[P_00] << 24;
  43. gMDS1[i] = mY[P_10] | mY[P_10] << 8 | mX[P_10] << 16 | m1[P_10] << 24;
  44. gMDS2[i] = mX[P_20] | mY[P_20] << 8 | m1[P_20] << 16 | mY[P_20] << 24;
  45. gMDS3[i] = mX[P_30] | m1[P_30] << 8 | mY[P_30] << 16 | mX[P_30] << 24;
  46. }
  47. this.k64Cnt = key.Length / 8; // pre-padded ?
  48. this.SetKey(key);
  49. }
  50. /// <summary>
  51. /// Encrypts the specified region of the input byte array and copies the encrypted data to the specified region of the output byte array.
  52. /// </summary>
  53. /// <param name="inputBuffer">The input data to encrypt.</param>
  54. /// <param name="inputOffset">The offset into the input byte array from which to begin using data.</param>
  55. /// <param name="inputCount">The number of bytes in the input byte array to use as data.</param>
  56. /// <param name="outputBuffer">The output to which to write encrypted data.</param>
  57. /// <param name="outputOffset">The offset into the output byte array from which to begin writing data.</param>
  58. /// <returns>
  59. /// The number of bytes encrypted.
  60. /// </returns>
  61. public override int EncryptBlock(byte[] inputBuffer, int inputOffset, int inputCount, byte[] outputBuffer, int outputOffset)
  62. {
  63. int x0 = BytesTo32Bits(inputBuffer, inputOffset) ^ gSubKeys[INPUT_WHITEN];
  64. int x1 = BytesTo32Bits(inputBuffer, inputOffset + 4) ^ gSubKeys[INPUT_WHITEN + 1];
  65. int x2 = BytesTo32Bits(inputBuffer, inputOffset + 8) ^ gSubKeys[INPUT_WHITEN + 2];
  66. int x3 = BytesTo32Bits(inputBuffer, inputOffset + 12) ^ gSubKeys[INPUT_WHITEN + 3];
  67. int k = ROUND_SUBKEYS;
  68. int t0, t1;
  69. for (int r = 0; r < ROUNDS; r += 2)
  70. {
  71. t0 = Fe32_0(x0);
  72. t1 = Fe32_3(x1);
  73. x2 ^= t0 + t1 + gSubKeys[k++];
  74. x2 = (int)((uint)x2 >> 1) | x2 << 31;
  75. x3 = (x3 << 1 | (int)((uint)x3 >> 31)) ^ (t0 + 2 * t1 + gSubKeys[k++]);
  76. t0 = Fe32_0(x2);
  77. t1 = Fe32_3(x3);
  78. x0 ^= t0 + t1 + gSubKeys[k++];
  79. x0 = (int)((uint)x0 >> 1) | x0 << 31;
  80. x1 = (x1 << 1 | (int)((uint)x1 >> 31)) ^ (t0 + 2 * t1 + gSubKeys[k++]);
  81. }
  82. Bits32ToBytes(x2 ^ gSubKeys[OUTPUT_WHITEN], outputBuffer, outputOffset);
  83. Bits32ToBytes(x3 ^ gSubKeys[OUTPUT_WHITEN + 1], outputBuffer, outputOffset + 4);
  84. Bits32ToBytes(x0 ^ gSubKeys[OUTPUT_WHITEN + 2], outputBuffer, outputOffset + 8);
  85. Bits32ToBytes(x1 ^ gSubKeys[OUTPUT_WHITEN + 3], outputBuffer, outputOffset + 12);
  86. return this.BlockSize;
  87. }
  88. /// <summary>
  89. /// Decrypts the specified region of the input byte array and copies the decrypted data to the specified region of the output byte array.
  90. /// </summary>
  91. /// <param name="inputBuffer">The input data to decrypt.</param>
  92. /// <param name="inputOffset">The offset into the input byte array from which to begin using data.</param>
  93. /// <param name="inputCount">The number of bytes in the input byte array to use as data.</param>
  94. /// <param name="outputBuffer">The output to which to write decrypted data.</param>
  95. /// <param name="outputOffset">The offset into the output byte array from which to begin writing data.</param>
  96. /// <returns>
  97. /// The number of bytes decrypted.
  98. /// </returns>
  99. public override int DecryptBlock(byte[] inputBuffer, int inputOffset, int inputCount, byte[] outputBuffer, int outputOffset)
  100. {
  101. int x2 = BytesTo32Bits(inputBuffer, inputOffset) ^ gSubKeys[OUTPUT_WHITEN];
  102. int x3 = BytesTo32Bits(inputBuffer, inputOffset + 4) ^ gSubKeys[OUTPUT_WHITEN + 1];
  103. int x0 = BytesTo32Bits(inputBuffer, inputOffset + 8) ^ gSubKeys[OUTPUT_WHITEN + 2];
  104. int x1 = BytesTo32Bits(inputBuffer, inputOffset + 12) ^ gSubKeys[OUTPUT_WHITEN + 3];
  105. int k = ROUND_SUBKEYS + 2 * ROUNDS - 1;
  106. int t0, t1;
  107. for (int r = 0; r < ROUNDS; r += 2)
  108. {
  109. t0 = Fe32_0(x2);
  110. t1 = Fe32_3(x3);
  111. x1 ^= t0 + 2 * t1 + gSubKeys[k--];
  112. x0 = (x0 << 1 | (int)((uint)x0 >> 31)) ^ (t0 + t1 + gSubKeys[k--]);
  113. x1 = (int)((uint)x1 >> 1) | x1 << 31;
  114. t0 = Fe32_0(x0);
  115. t1 = Fe32_3(x1);
  116. x3 ^= t0 + 2 * t1 + gSubKeys[k--];
  117. x2 = (x2 << 1 | (int)((uint)x2 >> 31)) ^ (t0 + t1 + gSubKeys[k--]);
  118. x3 = (int)((uint)x3 >> 1) | x3 << 31;
  119. }
  120. Bits32ToBytes(x0 ^ gSubKeys[INPUT_WHITEN], outputBuffer, outputOffset);
  121. Bits32ToBytes(x1 ^ gSubKeys[INPUT_WHITEN + 1], outputBuffer, outputOffset + 4);
  122. Bits32ToBytes(x2 ^ gSubKeys[INPUT_WHITEN + 2], outputBuffer, outputOffset + 8);
  123. Bits32ToBytes(x3 ^ gSubKeys[INPUT_WHITEN + 3], outputBuffer, outputOffset + 12);
  124. return this.BlockSize;
  125. }
  126. #region Static Definition Tables
  127. private static readonly byte[,] P = {
  128. { // p0
  129. (byte) 0xA9, (byte) 0x67, (byte) 0xB3, (byte) 0xE8,
  130. (byte) 0x04, (byte) 0xFD, (byte) 0xA3, (byte) 0x76,
  131. (byte) 0x9A, (byte) 0x92, (byte) 0x80, (byte) 0x78,
  132. (byte) 0xE4, (byte) 0xDD, (byte) 0xD1, (byte) 0x38,
  133. (byte) 0x0D, (byte) 0xC6, (byte) 0x35, (byte) 0x98,
  134. (byte) 0x18, (byte) 0xF7, (byte) 0xEC, (byte) 0x6C,
  135. (byte) 0x43, (byte) 0x75, (byte) 0x37, (byte) 0x26,
  136. (byte) 0xFA, (byte) 0x13, (byte) 0x94, (byte) 0x48,
  137. (byte) 0xF2, (byte) 0xD0, (byte) 0x8B, (byte) 0x30,
  138. (byte) 0x84, (byte) 0x54, (byte) 0xDF, (byte) 0x23,
  139. (byte) 0x19, (byte) 0x5B, (byte) 0x3D, (byte) 0x59,
  140. (byte) 0xF3, (byte) 0xAE, (byte) 0xA2, (byte) 0x82,
  141. (byte) 0x63, (byte) 0x01, (byte) 0x83, (byte) 0x2E,
  142. (byte) 0xD9, (byte) 0x51, (byte) 0x9B, (byte) 0x7C,
  143. (byte) 0xA6, (byte) 0xEB, (byte) 0xA5, (byte) 0xBE,
  144. (byte) 0x16, (byte) 0x0C, (byte) 0xE3, (byte) 0x61,
  145. (byte) 0xC0, (byte) 0x8C, (byte) 0x3A, (byte) 0xF5,
  146. (byte) 0x73, (byte) 0x2C, (byte) 0x25, (byte) 0x0B,
  147. (byte) 0xBB, (byte) 0x4E, (byte) 0x89, (byte) 0x6B,
  148. (byte) 0x53, (byte) 0x6A, (byte) 0xB4, (byte) 0xF1,
  149. (byte) 0xE1, (byte) 0xE6, (byte) 0xBD, (byte) 0x45,
  150. (byte) 0xE2, (byte) 0xF4, (byte) 0xB6, (byte) 0x66,
  151. (byte) 0xCC, (byte) 0x95, (byte) 0x03, (byte) 0x56,
  152. (byte) 0xD4, (byte) 0x1C, (byte) 0x1E, (byte) 0xD7,
  153. (byte) 0xFB, (byte) 0xC3, (byte) 0x8E, (byte) 0xB5,
  154. (byte) 0xE9, (byte) 0xCF, (byte) 0xBF, (byte) 0xBA,
  155. (byte) 0xEA, (byte) 0x77, (byte) 0x39, (byte) 0xAF,
  156. (byte) 0x33, (byte) 0xC9, (byte) 0x62, (byte) 0x71,
  157. (byte) 0x81, (byte) 0x79, (byte) 0x09, (byte) 0xAD,
  158. (byte) 0x24, (byte) 0xCD, (byte) 0xF9, (byte) 0xD8,
  159. (byte) 0xE5, (byte) 0xC5, (byte) 0xB9, (byte) 0x4D,
  160. (byte) 0x44, (byte) 0x08, (byte) 0x86, (byte) 0xE7,
  161. (byte) 0xA1, (byte) 0x1D, (byte) 0xAA, (byte) 0xED,
  162. (byte) 0x06, (byte) 0x70, (byte) 0xB2, (byte) 0xD2,
  163. (byte) 0x41, (byte) 0x7B, (byte) 0xA0, (byte) 0x11,
  164. (byte) 0x31, (byte) 0xC2, (byte) 0x27, (byte) 0x90,
  165. (byte) 0x20, (byte) 0xF6, (byte) 0x60, (byte) 0xFF,
  166. (byte) 0x96, (byte) 0x5C, (byte) 0xB1, (byte) 0xAB,
  167. (byte) 0x9E, (byte) 0x9C, (byte) 0x52, (byte) 0x1B,
  168. (byte) 0x5F, (byte) 0x93, (byte) 0x0A, (byte) 0xEF,
  169. (byte) 0x91, (byte) 0x85, (byte) 0x49, (byte) 0xEE,
  170. (byte) 0x2D, (byte) 0x4F, (byte) 0x8F, (byte) 0x3B,
  171. (byte) 0x47, (byte) 0x87, (byte) 0x6D, (byte) 0x46,
  172. (byte) 0xD6, (byte) 0x3E, (byte) 0x69, (byte) 0x64,
  173. (byte) 0x2A, (byte) 0xCE, (byte) 0xCB, (byte) 0x2F,
  174. (byte) 0xFC, (byte) 0x97, (byte) 0x05, (byte) 0x7A,
  175. (byte) 0xAC, (byte) 0x7F, (byte) 0xD5, (byte) 0x1A,
  176. (byte) 0x4B, (byte) 0x0E, (byte) 0xA7, (byte) 0x5A,
  177. (byte) 0x28, (byte) 0x14, (byte) 0x3F, (byte) 0x29,
  178. (byte) 0x88, (byte) 0x3C, (byte) 0x4C, (byte) 0x02,
  179. (byte) 0xB8, (byte) 0xDA, (byte) 0xB0, (byte) 0x17,
  180. (byte) 0x55, (byte) 0x1F, (byte) 0x8A, (byte) 0x7D,
  181. (byte) 0x57, (byte) 0xC7, (byte) 0x8D, (byte) 0x74,
  182. (byte) 0xB7, (byte) 0xC4, (byte) 0x9F, (byte) 0x72,
  183. (byte) 0x7E, (byte) 0x15, (byte) 0x22, (byte) 0x12,
  184. (byte) 0x58, (byte) 0x07, (byte) 0x99, (byte) 0x34,
  185. (byte) 0x6E, (byte) 0x50, (byte) 0xDE, (byte) 0x68,
  186. (byte) 0x65, (byte) 0xBC, (byte) 0xDB, (byte) 0xF8,
  187. (byte) 0xC8, (byte) 0xA8, (byte) 0x2B, (byte) 0x40,
  188. (byte) 0xDC, (byte) 0xFE, (byte) 0x32, (byte) 0xA4,
  189. (byte) 0xCA, (byte) 0x10, (byte) 0x21, (byte) 0xF0,
  190. (byte) 0xD3, (byte) 0x5D, (byte) 0x0F, (byte) 0x00,
  191. (byte) 0x6F, (byte) 0x9D, (byte) 0x36, (byte) 0x42,
  192. (byte) 0x4A, (byte) 0x5E, (byte) 0xC1, (byte) 0xE0 },
  193. { // p1
  194. (byte) 0x75, (byte) 0xF3, (byte) 0xC6, (byte) 0xF4,
  195. (byte) 0xDB, (byte) 0x7B, (byte) 0xFB, (byte) 0xC8,
  196. (byte) 0x4A, (byte) 0xD3, (byte) 0xE6, (byte) 0x6B,
  197. (byte) 0x45, (byte) 0x7D, (byte) 0xE8, (byte) 0x4B,
  198. (byte) 0xD6, (byte) 0x32, (byte) 0xD8, (byte) 0xFD,
  199. (byte) 0x37, (byte) 0x71, (byte) 0xF1, (byte) 0xE1,
  200. (byte) 0x30, (byte) 0x0F, (byte) 0xF8, (byte) 0x1B,
  201. (byte) 0x87, (byte) 0xFA, (byte) 0x06, (byte) 0x3F,
  202. (byte) 0x5E, (byte) 0xBA, (byte) 0xAE, (byte) 0x5B,
  203. (byte) 0x8A, (byte) 0x00, (byte) 0xBC, (byte) 0x9D,
  204. (byte) 0x6D, (byte) 0xC1, (byte) 0xB1, (byte) 0x0E,
  205. (byte) 0x80, (byte) 0x5D, (byte) 0xD2, (byte) 0xD5,
  206. (byte) 0xA0, (byte) 0x84, (byte) 0x07, (byte) 0x14,
  207. (byte) 0xB5, (byte) 0x90, (byte) 0x2C, (byte) 0xA3,
  208. (byte) 0xB2, (byte) 0x73, (byte) 0x4C, (byte) 0x54,
  209. (byte) 0x92, (byte) 0x74, (byte) 0x36, (byte) 0x51,
  210. (byte) 0x38, (byte) 0xB0, (byte) 0xBD, (byte) 0x5A,
  211. (byte) 0xFC, (byte) 0x60, (byte) 0x62, (byte) 0x96,
  212. (byte) 0x6C, (byte) 0x42, (byte) 0xF7, (byte) 0x10,
  213. (byte) 0x7C, (byte) 0x28, (byte) 0x27, (byte) 0x8C,
  214. (byte) 0x13, (byte) 0x95, (byte) 0x9C, (byte) 0xC7,
  215. (byte) 0x24, (byte) 0x46, (byte) 0x3B, (byte) 0x70,
  216. (byte) 0xCA, (byte) 0xE3, (byte) 0x85, (byte) 0xCB,
  217. (byte) 0x11, (byte) 0xD0, (byte) 0x93, (byte) 0xB8,
  218. (byte) 0xA6, (byte) 0x83, (byte) 0x20, (byte) 0xFF,
  219. (byte) 0x9F, (byte) 0x77, (byte) 0xC3, (byte) 0xCC,
  220. (byte) 0x03, (byte) 0x6F, (byte) 0x08, (byte) 0xBF,
  221. (byte) 0x40, (byte) 0xE7, (byte) 0x2B, (byte) 0xE2,
  222. (byte) 0x79, (byte) 0x0C, (byte) 0xAA, (byte) 0x82,
  223. (byte) 0x41, (byte) 0x3A, (byte) 0xEA, (byte) 0xB9,
  224. (byte) 0xE4, (byte) 0x9A, (byte) 0xA4, (byte) 0x97,
  225. (byte) 0x7E, (byte) 0xDA, (byte) 0x7A, (byte) 0x17,
  226. (byte) 0x66, (byte) 0x94, (byte) 0xA1, (byte) 0x1D,
  227. (byte) 0x3D, (byte) 0xF0, (byte) 0xDE, (byte) 0xB3,
  228. (byte) 0x0B, (byte) 0x72, (byte) 0xA7, (byte) 0x1C,
  229. (byte) 0xEF, (byte) 0xD1, (byte) 0x53, (byte) 0x3E,
  230. (byte) 0x8F, (byte) 0x33, (byte) 0x26, (byte) 0x5F,
  231. (byte) 0xEC, (byte) 0x76, (byte) 0x2A, (byte) 0x49,
  232. (byte) 0x81, (byte) 0x88, (byte) 0xEE, (byte) 0x21,
  233. (byte) 0xC4, (byte) 0x1A, (byte) 0xEB, (byte) 0xD9,
  234. (byte) 0xC5, (byte) 0x39, (byte) 0x99, (byte) 0xCD,
  235. (byte) 0xAD, (byte) 0x31, (byte) 0x8B, (byte) 0x01,
  236. (byte) 0x18, (byte) 0x23, (byte) 0xDD, (byte) 0x1F,
  237. (byte) 0x4E, (byte) 0x2D, (byte) 0xF9, (byte) 0x48,
  238. (byte) 0x4F, (byte) 0xF2, (byte) 0x65, (byte) 0x8E,
  239. (byte) 0x78, (byte) 0x5C, (byte) 0x58, (byte) 0x19,
  240. (byte) 0x8D, (byte) 0xE5, (byte) 0x98, (byte) 0x57,
  241. (byte) 0x67, (byte) 0x7F, (byte) 0x05, (byte) 0x64,
  242. (byte) 0xAF, (byte) 0x63, (byte) 0xB6, (byte) 0xFE,
  243. (byte) 0xF5, (byte) 0xB7, (byte) 0x3C, (byte) 0xA5,
  244. (byte) 0xCE, (byte) 0xE9, (byte) 0x68, (byte) 0x44,
  245. (byte) 0xE0, (byte) 0x4D, (byte) 0x43, (byte) 0x69,
  246. (byte) 0x29, (byte) 0x2E, (byte) 0xAC, (byte) 0x15,
  247. (byte) 0x59, (byte) 0xA8, (byte) 0x0A, (byte) 0x9E,
  248. (byte) 0x6E, (byte) 0x47, (byte) 0xDF, (byte) 0x34,
  249. (byte) 0x35, (byte) 0x6A, (byte) 0xCF, (byte) 0xDC,
  250. (byte) 0x22, (byte) 0xC9, (byte) 0xC0, (byte) 0x9B,
  251. (byte) 0x89, (byte) 0xD4, (byte) 0xED, (byte) 0xAB,
  252. (byte) 0x12, (byte) 0xA2, (byte) 0x0D, (byte) 0x52,
  253. (byte) 0xBB, (byte) 0x02, (byte) 0x2F, (byte) 0xA9,
  254. (byte) 0xD7, (byte) 0x61, (byte) 0x1E, (byte) 0xB4,
  255. (byte) 0x50, (byte) 0x04, (byte) 0xF6, (byte) 0xC2,
  256. (byte) 0x16, (byte) 0x25, (byte) 0x86, (byte) 0x56,
  257. (byte) 0x55, (byte) 0x09, (byte) 0xBE, (byte) 0x91 }
  258. };
  259. #endregion
  260. /**
  261. * Define the fixed p0/p1 permutations used in keyed S-box lookup.
  262. * By changing the following constant definitions, the S-boxes will
  263. * automatically Get changed in the Twofish engine.
  264. */
  265. private const int P_00 = 1;
  266. private const int P_01 = 0;
  267. private const int P_02 = 0;
  268. private const int P_03 = P_01 ^ 1;
  269. private const int P_04 = 1;
  270. private const int P_10 = 0;
  271. private const int P_11 = 0;
  272. private const int P_12 = 1;
  273. private const int P_13 = P_11 ^ 1;
  274. private const int P_14 = 0;
  275. private const int P_20 = 1;
  276. private const int P_21 = 1;
  277. private const int P_22 = 0;
  278. private const int P_23 = P_21 ^ 1;
  279. private const int P_24 = 0;
  280. private const int P_30 = 0;
  281. private const int P_31 = 1;
  282. private const int P_32 = 1;
  283. private const int P_33 = P_31 ^ 1;
  284. private const int P_34 = 1;
  285. /* Primitive polynomial for GF(256) */
  286. private const int GF256_FDBK = 0x169;
  287. private const int GF256_FDBK_2 = GF256_FDBK / 2;
  288. private const int GF256_FDBK_4 = GF256_FDBK / 4;
  289. private const int RS_GF_FDBK = 0x14D; // field generator
  290. //====================================
  291. // Useful constants
  292. //====================================
  293. private const int ROUNDS = 16;
  294. private const int MAX_ROUNDS = 16; // bytes = 128 bits
  295. private const int MAX_KEY_BITS = 256;
  296. private const int INPUT_WHITEN = 0;
  297. private const int OUTPUT_WHITEN = INPUT_WHITEN + 16 / 4; // 4
  298. private const int ROUND_SUBKEYS = OUTPUT_WHITEN + 16 / 4;// 8
  299. private const int TOTAL_SUBKEYS = ROUND_SUBKEYS + 2 * MAX_ROUNDS;// 40
  300. private const int SK_STEP = 0x02020202;
  301. private const int SK_BUMP = 0x01010101;
  302. private const int SK_ROTL = 9;
  303. private int[] gMDS0 = new int[MAX_KEY_BITS];
  304. private int[] gMDS1 = new int[MAX_KEY_BITS];
  305. private int[] gMDS2 = new int[MAX_KEY_BITS];
  306. private int[] gMDS3 = new int[MAX_KEY_BITS];
  307. /**
  308. * gSubKeys[] and gSBox[] are eventually used in the
  309. * encryption and decryption methods.
  310. */
  311. private int[] gSubKeys;
  312. private int[] gSBox;
  313. private int k64Cnt;
  314. private void SetKey(byte[] key)
  315. {
  316. int[] k32e = new int[MAX_KEY_BITS / 64]; // 4
  317. int[] k32o = new int[MAX_KEY_BITS / 64]; // 4
  318. int[] sBoxKeys = new int[MAX_KEY_BITS / 64]; // 4
  319. gSubKeys = new int[TOTAL_SUBKEYS];
  320. if (k64Cnt < 1)
  321. {
  322. throw new ArgumentException("Key size less than 64 bits");
  323. }
  324. if (k64Cnt > 4)
  325. {
  326. throw new ArgumentException("Key size larger than 256 bits");
  327. }
  328. /*
  329. * k64Cnt is the number of 8 byte blocks (64 chunks)
  330. * that are in the input key. The input key is a
  331. * maximum of 32 bytes ( 256 bits ), so the range
  332. * for k64Cnt is 1..4
  333. */
  334. for (int i = 0, p = 0; i < k64Cnt; i++)
  335. {
  336. p = i * 8;
  337. k32e[i] = BytesTo32Bits(key, p);
  338. k32o[i] = BytesTo32Bits(key, p + 4);
  339. sBoxKeys[k64Cnt - 1 - i] = RS_MDS_Encode(k32e[i], k32o[i]);
  340. }
  341. int q, A, B;
  342. for (int i = 0; i < TOTAL_SUBKEYS / 2; i++)
  343. {
  344. q = i * SK_STEP;
  345. A = F32(q, k32e);
  346. B = F32(q + SK_BUMP, k32o);
  347. B = B << 8 | (int)((uint)B >> 24);
  348. A += B;
  349. gSubKeys[i * 2] = A;
  350. A += B;
  351. gSubKeys[i * 2 + 1] = A << SK_ROTL | (int)((uint)A >> (32 - SK_ROTL));
  352. }
  353. /*
  354. * fully expand the table for speed
  355. */
  356. int k0 = sBoxKeys[0];
  357. int k1 = sBoxKeys[1];
  358. int k2 = sBoxKeys[2];
  359. int k3 = sBoxKeys[3];
  360. int b0, b1, b2, b3;
  361. gSBox = new int[4 * MAX_KEY_BITS];
  362. for (int i = 0; i < MAX_KEY_BITS; i++)
  363. {
  364. b0 = b1 = b2 = b3 = i;
  365. switch (k64Cnt & 3)
  366. {
  367. case 1:
  368. gSBox[i * 2] = gMDS0[(P[P_01, b0] & 0xff) ^ M_b0(k0)];
  369. gSBox[i * 2 + 1] = gMDS1[(P[P_11, b1] & 0xff) ^ M_b1(k0)];
  370. gSBox[i * 2 + 0x200] = gMDS2[(P[P_21, b2] & 0xff) ^ M_b2(k0)];
  371. gSBox[i * 2 + 0x201] = gMDS3[(P[P_31, b3] & 0xff) ^ M_b3(k0)];
  372. break;
  373. case 0: /* 256 bits of key */
  374. b0 = (P[P_04, b0] & 0xff) ^ M_b0(k3);
  375. b1 = (P[P_14, b1] & 0xff) ^ M_b1(k3);
  376. b2 = (P[P_24, b2] & 0xff) ^ M_b2(k3);
  377. b3 = (P[P_34, b3] & 0xff) ^ M_b3(k3);
  378. goto case 3;
  379. case 3:
  380. b0 = (P[P_03, b0] & 0xff) ^ M_b0(k2);
  381. b1 = (P[P_13, b1] & 0xff) ^ M_b1(k2);
  382. b2 = (P[P_23, b2] & 0xff) ^ M_b2(k2);
  383. b3 = (P[P_33, b3] & 0xff) ^ M_b3(k2);
  384. goto case 2;
  385. case 2:
  386. gSBox[i * 2] = gMDS0[(P[P_01, (P[P_02, b0] & 0xff) ^ M_b0(k1)] & 0xff) ^ M_b0(k0)];
  387. gSBox[i * 2 + 1] = gMDS1[(P[P_11, (P[P_12, b1] & 0xff) ^ M_b1(k1)] & 0xff) ^ M_b1(k0)];
  388. gSBox[i * 2 + 0x200] = gMDS2[(P[P_21, (P[P_22, b2] & 0xff) ^ M_b2(k1)] & 0xff) ^ M_b2(k0)];
  389. gSBox[i * 2 + 0x201] = gMDS3[(P[P_31, (P[P_32, b3] & 0xff) ^ M_b3(k1)] & 0xff) ^ M_b3(k0)];
  390. break;
  391. }
  392. }
  393. /*
  394. * the function exits having setup the gSBox with the
  395. * input key material.
  396. */
  397. }
  398. /*
  399. * TODO: This can be optimised and made cleaner by combining
  400. * the functionality in this function and applying it appropriately
  401. * to the creation of the subkeys during key setup.
  402. */
  403. private int F32(int x, int[] k32)
  404. {
  405. int b0 = M_b0(x);
  406. int b1 = M_b1(x);
  407. int b2 = M_b2(x);
  408. int b3 = M_b3(x);
  409. int k0 = k32[0];
  410. int k1 = k32[1];
  411. int k2 = k32[2];
  412. int k3 = k32[3];
  413. int result = 0;
  414. switch (k64Cnt & 3)
  415. {
  416. case 1:
  417. result = gMDS0[(P[P_01, b0] & 0xff) ^ M_b0(k0)] ^
  418. gMDS1[(P[P_11, b1] & 0xff) ^ M_b1(k0)] ^
  419. gMDS2[(P[P_21, b2] & 0xff) ^ M_b2(k0)] ^
  420. gMDS3[(P[P_31, b3] & 0xff) ^ M_b3(k0)];
  421. break;
  422. case 0: /* 256 bits of key */
  423. b0 = (P[P_04, b0] & 0xff) ^ M_b0(k3);
  424. b1 = (P[P_14, b1] & 0xff) ^ M_b1(k3);
  425. b2 = (P[P_24, b2] & 0xff) ^ M_b2(k3);
  426. b3 = (P[P_34, b3] & 0xff) ^ M_b3(k3);
  427. goto case 3;
  428. case 3:
  429. b0 = (P[P_03, b0] & 0xff) ^ M_b0(k2);
  430. b1 = (P[P_13, b1] & 0xff) ^ M_b1(k2);
  431. b2 = (P[P_23, b2] & 0xff) ^ M_b2(k2);
  432. b3 = (P[P_33, b3] & 0xff) ^ M_b3(k2);
  433. goto case 2;
  434. case 2:
  435. result =
  436. gMDS0[(P[P_01, (P[P_02, b0] & 0xff) ^ M_b0(k1)] & 0xff) ^ M_b0(k0)] ^
  437. gMDS1[(P[P_11, (P[P_12, b1] & 0xff) ^ M_b1(k1)] & 0xff) ^ M_b1(k0)] ^
  438. gMDS2[(P[P_21, (P[P_22, b2] & 0xff) ^ M_b2(k1)] & 0xff) ^ M_b2(k0)] ^
  439. gMDS3[(P[P_31, (P[P_32, b3] & 0xff) ^ M_b3(k1)] & 0xff) ^ M_b3(k0)];
  440. break;
  441. }
  442. return result;
  443. }
  444. /**
  445. * Use (12, 8) Reed-Solomon code over GF(256) to produce
  446. * a key S-box 32-bit entity from 2 key material 32-bit
  447. * entities.
  448. *
  449. * @param k0 first 32-bit entity
  450. * @param k1 second 32-bit entity
  451. * @return Remainder polynomial Generated using RS code
  452. */
  453. private int RS_MDS_Encode(int k0, int k1)
  454. {
  455. int r = k1;
  456. for (int i = 0; i < 4; i++) // shift 1 byte at a time
  457. {
  458. r = RS_rem(r);
  459. }
  460. r ^= k0;
  461. for (int i = 0; i < 4; i++)
  462. {
  463. r = RS_rem(r);
  464. }
  465. return r;
  466. }
  467. /**
  468. * Reed-Solomon code parameters: (12,8) reversible code:
  469. * <p>
  470. * <pre>
  471. * G(x) = x^4 + (a+1/a)x^3 + ax^2 + (a+1/a)x + 1
  472. * </pre>
  473. * where a = primitive root of field generator 0x14D
  474. * </p>
  475. */
  476. private int RS_rem(int x)
  477. {
  478. int b = (int)(((uint)x >> 24) & 0xff);
  479. int g2 = ((b << 1) ^
  480. ((b & 0x80) != 0 ? RS_GF_FDBK : 0)) & 0xff;
  481. int g3 = ((int)((uint)b >> 1) ^
  482. ((b & 0x01) != 0 ? (int)((uint)RS_GF_FDBK >> 1) : 0)) ^ g2;
  483. return ((x << 8) ^ (g3 << 24) ^ (g2 << 16) ^ (g3 << 8) ^ b);
  484. }
  485. private int LFSR1(int x)
  486. {
  487. return (x >> 1) ^
  488. (((x & 0x01) != 0) ? GF256_FDBK_2 : 0);
  489. }
  490. private int LFSR2(int x)
  491. {
  492. return (x >> 2) ^
  493. (((x & 0x02) != 0) ? GF256_FDBK_2 : 0) ^
  494. (((x & 0x01) != 0) ? GF256_FDBK_4 : 0);
  495. }
  496. private int Mx_X(int x)
  497. {
  498. return x ^ LFSR2(x);
  499. } // 5B
  500. private int Mx_Y(int x)
  501. {
  502. return x ^ LFSR1(x) ^ LFSR2(x);
  503. } // EF
  504. private int M_b0(int x)
  505. {
  506. return x & 0xff;
  507. }
  508. private int M_b1(int x)
  509. {
  510. return (int)((uint)x >> 8) & 0xff;
  511. }
  512. private int M_b2(int x)
  513. {
  514. return (int)((uint)x >> 16) & 0xff;
  515. }
  516. private int M_b3(int x)
  517. {
  518. return (int)((uint)x >> 24) & 0xff;
  519. }
  520. private int Fe32_0(int x)
  521. {
  522. return gSBox[0x000 + 2 * (x & 0xff)] ^
  523. gSBox[0x001 + 2 * ((int)((uint)x >> 8) & 0xff)] ^
  524. gSBox[0x200 + 2 * ((int)((uint)x >> 16) & 0xff)] ^
  525. gSBox[0x201 + 2 * ((int)((uint)x >> 24) & 0xff)];
  526. }
  527. private int Fe32_3(int x)
  528. {
  529. return gSBox[0x000 + 2 * ((int)((uint)x >> 24) & 0xff)] ^
  530. gSBox[0x001 + 2 * (x & 0xff)] ^
  531. gSBox[0x200 + 2 * ((int)((uint)x >> 8) & 0xff)] ^
  532. gSBox[0x201 + 2 * ((int)((uint)x >> 16) & 0xff)];
  533. }
  534. private int BytesTo32Bits(byte[] b, int p)
  535. {
  536. return ((b[p] & 0xff)) |
  537. ((b[p + 1] & 0xff) << 8) |
  538. ((b[p + 2] & 0xff) << 16) |
  539. ((b[p + 3] & 0xff) << 24);
  540. }
  541. private void Bits32ToBytes(int inData, byte[] b, int offset)
  542. {
  543. b[offset] = (byte)inData;
  544. b[offset + 1] = (byte)(inData >> 8);
  545. b[offset + 2] = (byte)(inData >> 16);
  546. b[offset + 3] = (byte)(inData >> 24);
  547. }
  548. }
  549. }