TwofishCipher.cs 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611
  1. using System;
  2. namespace Renci.SshNet.Security.Cryptography.Ciphers
  3. {
  4. /// <summary>
  5. /// Implements Twofish cipher algorithm
  6. /// </summary>
  7. public sealed class TwofishCipher : BlockCipher
  8. {
  9. /// <summary>
  10. /// Initializes a new instance of the <see cref="TwofishCipher"/> class.
  11. /// </summary>
  12. /// <param name="key">The key.</param>
  13. /// <param name="mode">The mode.</param>
  14. /// <param name="padding">The padding.</param>
  15. /// <exception cref="ArgumentNullException"><paramref name="key"/> is null.</exception>
  16. /// <exception cref="ArgumentException">Keysize is not valid for this algorithm.</exception>
  17. public TwofishCipher(byte[] key, CipherMode mode, CipherPadding padding)
  18. : base(key, 16, mode, padding)
  19. {
  20. var keySize = key.Length * 8;
  21. if (!(keySize == 128 || keySize == 192 || keySize == 256))
  22. throw new ArgumentException(string.Format("KeySize '{0}' is not valid for this algorithm.", keySize));
  23. // TODO: Refactor this algorithm
  24. // calculate the MDS matrix
  25. var m1 = new int[2];
  26. var mX = new int[2];
  27. var mY = new int[2];
  28. for (var i = 0; i < MAX_KEY_BITS; i++)
  29. {
  30. var j = P[0 + i] & 0xff;
  31. m1[0] = j;
  32. mX[0] = Mx_X(j) & 0xff;
  33. mY[0] = Mx_Y(j) & 0xff;
  34. j = P[(1 * 256) + i] & 0xff;
  35. m1[1] = j;
  36. mX[1] = Mx_X(j) & 0xff;
  37. mY[1] = Mx_Y(j) & 0xff;
  38. gMDS0[i] = m1[P_00] | mX[P_00] << 8 | mY[P_00] << 16 | mY[P_00] << 24;
  39. gMDS1[i] = mY[P_10] | mY[P_10] << 8 | mX[P_10] << 16 | m1[P_10] << 24;
  40. gMDS2[i] = mX[P_20] | mY[P_20] << 8 | m1[P_20] << 16 | mY[P_20] << 24;
  41. gMDS3[i] = mX[P_30] | m1[P_30] << 8 | mY[P_30] << 16 | mX[P_30] << 24;
  42. }
  43. k64Cnt = key.Length / 8; // pre-padded ?
  44. SetKey(key);
  45. }
  46. /// <summary>
  47. /// Encrypts the specified region of the input byte array and copies the encrypted data to the specified region of the output byte array.
  48. /// </summary>
  49. /// <param name="inputBuffer">The input data to encrypt.</param>
  50. /// <param name="inputOffset">The offset into the input byte array from which to begin using data.</param>
  51. /// <param name="inputCount">The number of bytes in the input byte array to use as data.</param>
  52. /// <param name="outputBuffer">The output to which to write encrypted data.</param>
  53. /// <param name="outputOffset">The offset into the output byte array from which to begin writing data.</param>
  54. /// <returns>
  55. /// The number of bytes encrypted.
  56. /// </returns>
  57. public override int EncryptBlock(byte[] inputBuffer, int inputOffset, int inputCount, byte[] outputBuffer, int outputOffset)
  58. {
  59. int x0 = BytesTo32Bits(inputBuffer, inputOffset) ^ gSubKeys[INPUT_WHITEN];
  60. int x1 = BytesTo32Bits(inputBuffer, inputOffset + 4) ^ gSubKeys[INPUT_WHITEN + 1];
  61. int x2 = BytesTo32Bits(inputBuffer, inputOffset + 8) ^ gSubKeys[INPUT_WHITEN + 2];
  62. int x3 = BytesTo32Bits(inputBuffer, inputOffset + 12) ^ gSubKeys[INPUT_WHITEN + 3];
  63. int k = ROUND_SUBKEYS;
  64. int t0, t1;
  65. for (int r = 0; r < ROUNDS; r += 2)
  66. {
  67. t0 = Fe32_0(gSBox, x0);
  68. t1 = Fe32_3(gSBox, x1);
  69. x2 ^= t0 + t1 + gSubKeys[k++];
  70. x2 = (int)((uint)x2 >> 1) | x2 << 31;
  71. x3 = (x3 << 1 | (int)((uint)x3 >> 31)) ^ (t0 + 2 * t1 + gSubKeys[k++]);
  72. t0 = Fe32_0(gSBox, x2);
  73. t1 = Fe32_3(gSBox, x3);
  74. x0 ^= t0 + t1 + gSubKeys[k++];
  75. x0 = (int)((uint)x0 >> 1) | x0 << 31;
  76. x1 = (x1 << 1 | (int)((uint)x1 >> 31)) ^ (t0 + 2 * t1 + gSubKeys[k++]);
  77. }
  78. Bits32ToBytes(x2 ^ gSubKeys[OUTPUT_WHITEN], outputBuffer, outputOffset);
  79. Bits32ToBytes(x3 ^ gSubKeys[OUTPUT_WHITEN + 1], outputBuffer, outputOffset + 4);
  80. Bits32ToBytes(x0 ^ gSubKeys[OUTPUT_WHITEN + 2], outputBuffer, outputOffset + 8);
  81. Bits32ToBytes(x1 ^ gSubKeys[OUTPUT_WHITEN + 3], outputBuffer, outputOffset + 12);
  82. return BlockSize;
  83. }
  84. /// <summary>
  85. /// Decrypts the specified region of the input byte array and copies the decrypted data to the specified region of the output byte array.
  86. /// </summary>
  87. /// <param name="inputBuffer">The input data to decrypt.</param>
  88. /// <param name="inputOffset">The offset into the input byte array from which to begin using data.</param>
  89. /// <param name="inputCount">The number of bytes in the input byte array to use as data.</param>
  90. /// <param name="outputBuffer">The output to which to write decrypted data.</param>
  91. /// <param name="outputOffset">The offset into the output byte array from which to begin writing data.</param>
  92. /// <returns>
  93. /// The number of bytes decrypted.
  94. /// </returns>
  95. public override int DecryptBlock(byte[] inputBuffer, int inputOffset, int inputCount, byte[] outputBuffer, int outputOffset)
  96. {
  97. var x2 = BytesTo32Bits(inputBuffer, inputOffset) ^ gSubKeys[OUTPUT_WHITEN];
  98. var x3 = BytesTo32Bits(inputBuffer, inputOffset + 4) ^ gSubKeys[OUTPUT_WHITEN + 1];
  99. var x0 = BytesTo32Bits(inputBuffer, inputOffset + 8) ^ gSubKeys[OUTPUT_WHITEN + 2];
  100. var x1 = BytesTo32Bits(inputBuffer, inputOffset + 12) ^ gSubKeys[OUTPUT_WHITEN + 3];
  101. var k = ROUND_SUBKEYS + 2 * ROUNDS - 1;
  102. for (var r = 0; r < ROUNDS; r += 2)
  103. {
  104. var t0 = Fe32_0(gSBox, x2);
  105. var t1 = Fe32_3(gSBox, x3);
  106. x1 ^= t0 + 2 * t1 + gSubKeys[k--];
  107. x0 = (x0 << 1 | (int)((uint)x0 >> 31)) ^ (t0 + t1 + gSubKeys[k--]);
  108. x1 = (int)((uint)x1 >> 1) | x1 << 31;
  109. t0 = Fe32_0(gSBox, x0);
  110. t1 = Fe32_3(gSBox, x1);
  111. x3 ^= t0 + 2 * t1 + gSubKeys[k--];
  112. x2 = (x2 << 1 | (int)((uint)x2 >> 31)) ^ (t0 + t1 + gSubKeys[k--]);
  113. x3 = (int)((uint)x3 >> 1) | x3 << 31;
  114. }
  115. Bits32ToBytes(x0 ^ gSubKeys[INPUT_WHITEN], outputBuffer, outputOffset);
  116. Bits32ToBytes(x1 ^ gSubKeys[INPUT_WHITEN + 1], outputBuffer, outputOffset + 4);
  117. Bits32ToBytes(x2 ^ gSubKeys[INPUT_WHITEN + 2], outputBuffer, outputOffset + 8);
  118. Bits32ToBytes(x3 ^ gSubKeys[INPUT_WHITEN + 3], outputBuffer, outputOffset + 12);
  119. return BlockSize;
  120. }
  121. #region Static Definition Tables
  122. private static readonly byte[] P = {
  123. //{ // p0
  124. (byte) 0xA9, (byte) 0x67, (byte) 0xB3, (byte) 0xE8,
  125. (byte) 0x04, (byte) 0xFD, (byte) 0xA3, (byte) 0x76,
  126. (byte) 0x9A, (byte) 0x92, (byte) 0x80, (byte) 0x78,
  127. (byte) 0xE4, (byte) 0xDD, (byte) 0xD1, (byte) 0x38,
  128. (byte) 0x0D, (byte) 0xC6, (byte) 0x35, (byte) 0x98,
  129. (byte) 0x18, (byte) 0xF7, (byte) 0xEC, (byte) 0x6C,
  130. (byte) 0x43, (byte) 0x75, (byte) 0x37, (byte) 0x26,
  131. (byte) 0xFA, (byte) 0x13, (byte) 0x94, (byte) 0x48,
  132. (byte) 0xF2, (byte) 0xD0, (byte) 0x8B, (byte) 0x30,
  133. (byte) 0x84, (byte) 0x54, (byte) 0xDF, (byte) 0x23,
  134. (byte) 0x19, (byte) 0x5B, (byte) 0x3D, (byte) 0x59,
  135. (byte) 0xF3, (byte) 0xAE, (byte) 0xA2, (byte) 0x82,
  136. (byte) 0x63, (byte) 0x01, (byte) 0x83, (byte) 0x2E,
  137. (byte) 0xD9, (byte) 0x51, (byte) 0x9B, (byte) 0x7C,
  138. (byte) 0xA6, (byte) 0xEB, (byte) 0xA5, (byte) 0xBE,
  139. (byte) 0x16, (byte) 0x0C, (byte) 0xE3, (byte) 0x61,
  140. (byte) 0xC0, (byte) 0x8C, (byte) 0x3A, (byte) 0xF5,
  141. (byte) 0x73, (byte) 0x2C, (byte) 0x25, (byte) 0x0B,
  142. (byte) 0xBB, (byte) 0x4E, (byte) 0x89, (byte) 0x6B,
  143. (byte) 0x53, (byte) 0x6A, (byte) 0xB4, (byte) 0xF1,
  144. (byte) 0xE1, (byte) 0xE6, (byte) 0xBD, (byte) 0x45,
  145. (byte) 0xE2, (byte) 0xF4, (byte) 0xB6, (byte) 0x66,
  146. (byte) 0xCC, (byte) 0x95, (byte) 0x03, (byte) 0x56,
  147. (byte) 0xD4, (byte) 0x1C, (byte) 0x1E, (byte) 0xD7,
  148. (byte) 0xFB, (byte) 0xC3, (byte) 0x8E, (byte) 0xB5,
  149. (byte) 0xE9, (byte) 0xCF, (byte) 0xBF, (byte) 0xBA,
  150. (byte) 0xEA, (byte) 0x77, (byte) 0x39, (byte) 0xAF,
  151. (byte) 0x33, (byte) 0xC9, (byte) 0x62, (byte) 0x71,
  152. (byte) 0x81, (byte) 0x79, (byte) 0x09, (byte) 0xAD,
  153. (byte) 0x24, (byte) 0xCD, (byte) 0xF9, (byte) 0xD8,
  154. (byte) 0xE5, (byte) 0xC5, (byte) 0xB9, (byte) 0x4D,
  155. (byte) 0x44, (byte) 0x08, (byte) 0x86, (byte) 0xE7,
  156. (byte) 0xA1, (byte) 0x1D, (byte) 0xAA, (byte) 0xED,
  157. (byte) 0x06, (byte) 0x70, (byte) 0xB2, (byte) 0xD2,
  158. (byte) 0x41, (byte) 0x7B, (byte) 0xA0, (byte) 0x11,
  159. (byte) 0x31, (byte) 0xC2, (byte) 0x27, (byte) 0x90,
  160. (byte) 0x20, (byte) 0xF6, (byte) 0x60, (byte) 0xFF,
  161. (byte) 0x96, (byte) 0x5C, (byte) 0xB1, (byte) 0xAB,
  162. (byte) 0x9E, (byte) 0x9C, (byte) 0x52, (byte) 0x1B,
  163. (byte) 0x5F, (byte) 0x93, (byte) 0x0A, (byte) 0xEF,
  164. (byte) 0x91, (byte) 0x85, (byte) 0x49, (byte) 0xEE,
  165. (byte) 0x2D, (byte) 0x4F, (byte) 0x8F, (byte) 0x3B,
  166. (byte) 0x47, (byte) 0x87, (byte) 0x6D, (byte) 0x46,
  167. (byte) 0xD6, (byte) 0x3E, (byte) 0x69, (byte) 0x64,
  168. (byte) 0x2A, (byte) 0xCE, (byte) 0xCB, (byte) 0x2F,
  169. (byte) 0xFC, (byte) 0x97, (byte) 0x05, (byte) 0x7A,
  170. (byte) 0xAC, (byte) 0x7F, (byte) 0xD5, (byte) 0x1A,
  171. (byte) 0x4B, (byte) 0x0E, (byte) 0xA7, (byte) 0x5A,
  172. (byte) 0x28, (byte) 0x14, (byte) 0x3F, (byte) 0x29,
  173. (byte) 0x88, (byte) 0x3C, (byte) 0x4C, (byte) 0x02,
  174. (byte) 0xB8, (byte) 0xDA, (byte) 0xB0, (byte) 0x17,
  175. (byte) 0x55, (byte) 0x1F, (byte) 0x8A, (byte) 0x7D,
  176. (byte) 0x57, (byte) 0xC7, (byte) 0x8D, (byte) 0x74,
  177. (byte) 0xB7, (byte) 0xC4, (byte) 0x9F, (byte) 0x72,
  178. (byte) 0x7E, (byte) 0x15, (byte) 0x22, (byte) 0x12,
  179. (byte) 0x58, (byte) 0x07, (byte) 0x99, (byte) 0x34,
  180. (byte) 0x6E, (byte) 0x50, (byte) 0xDE, (byte) 0x68,
  181. (byte) 0x65, (byte) 0xBC, (byte) 0xDB, (byte) 0xF8,
  182. (byte) 0xC8, (byte) 0xA8, (byte) 0x2B, (byte) 0x40,
  183. (byte) 0xDC, (byte) 0xFE, (byte) 0x32, (byte) 0xA4,
  184. (byte) 0xCA, (byte) 0x10, (byte) 0x21, (byte) 0xF0,
  185. (byte) 0xD3, (byte) 0x5D, (byte) 0x0F, (byte) 0x00,
  186. (byte) 0x6F, (byte) 0x9D, (byte) 0x36, (byte) 0x42,
  187. (byte) 0x4A, (byte) 0x5E, (byte) 0xC1, (byte) 0xE0,
  188. // },
  189. //{ // p1
  190. (byte) 0x75, (byte) 0xF3, (byte) 0xC6, (byte) 0xF4,
  191. (byte) 0xDB, (byte) 0x7B, (byte) 0xFB, (byte) 0xC8,
  192. (byte) 0x4A, (byte) 0xD3, (byte) 0xE6, (byte) 0x6B,
  193. (byte) 0x45, (byte) 0x7D, (byte) 0xE8, (byte) 0x4B,
  194. (byte) 0xD6, (byte) 0x32, (byte) 0xD8, (byte) 0xFD,
  195. (byte) 0x37, (byte) 0x71, (byte) 0xF1, (byte) 0xE1,
  196. (byte) 0x30, (byte) 0x0F, (byte) 0xF8, (byte) 0x1B,
  197. (byte) 0x87, (byte) 0xFA, (byte) 0x06, (byte) 0x3F,
  198. (byte) 0x5E, (byte) 0xBA, (byte) 0xAE, (byte) 0x5B,
  199. (byte) 0x8A, (byte) 0x00, (byte) 0xBC, (byte) 0x9D,
  200. (byte) 0x6D, (byte) 0xC1, (byte) 0xB1, (byte) 0x0E,
  201. (byte) 0x80, (byte) 0x5D, (byte) 0xD2, (byte) 0xD5,
  202. (byte) 0xA0, (byte) 0x84, (byte) 0x07, (byte) 0x14,
  203. (byte) 0xB5, (byte) 0x90, (byte) 0x2C, (byte) 0xA3,
  204. (byte) 0xB2, (byte) 0x73, (byte) 0x4C, (byte) 0x54,
  205. (byte) 0x92, (byte) 0x74, (byte) 0x36, (byte) 0x51,
  206. (byte) 0x38, (byte) 0xB0, (byte) 0xBD, (byte) 0x5A,
  207. (byte) 0xFC, (byte) 0x60, (byte) 0x62, (byte) 0x96,
  208. (byte) 0x6C, (byte) 0x42, (byte) 0xF7, (byte) 0x10,
  209. (byte) 0x7C, (byte) 0x28, (byte) 0x27, (byte) 0x8C,
  210. (byte) 0x13, (byte) 0x95, (byte) 0x9C, (byte) 0xC7,
  211. (byte) 0x24, (byte) 0x46, (byte) 0x3B, (byte) 0x70,
  212. (byte) 0xCA, (byte) 0xE3, (byte) 0x85, (byte) 0xCB,
  213. (byte) 0x11, (byte) 0xD0, (byte) 0x93, (byte) 0xB8,
  214. (byte) 0xA6, (byte) 0x83, (byte) 0x20, (byte) 0xFF,
  215. (byte) 0x9F, (byte) 0x77, (byte) 0xC3, (byte) 0xCC,
  216. (byte) 0x03, (byte) 0x6F, (byte) 0x08, (byte) 0xBF,
  217. (byte) 0x40, (byte) 0xE7, (byte) 0x2B, (byte) 0xE2,
  218. (byte) 0x79, (byte) 0x0C, (byte) 0xAA, (byte) 0x82,
  219. (byte) 0x41, (byte) 0x3A, (byte) 0xEA, (byte) 0xB9,
  220. (byte) 0xE4, (byte) 0x9A, (byte) 0xA4, (byte) 0x97,
  221. (byte) 0x7E, (byte) 0xDA, (byte) 0x7A, (byte) 0x17,
  222. (byte) 0x66, (byte) 0x94, (byte) 0xA1, (byte) 0x1D,
  223. (byte) 0x3D, (byte) 0xF0, (byte) 0xDE, (byte) 0xB3,
  224. (byte) 0x0B, (byte) 0x72, (byte) 0xA7, (byte) 0x1C,
  225. (byte) 0xEF, (byte) 0xD1, (byte) 0x53, (byte) 0x3E,
  226. (byte) 0x8F, (byte) 0x33, (byte) 0x26, (byte) 0x5F,
  227. (byte) 0xEC, (byte) 0x76, (byte) 0x2A, (byte) 0x49,
  228. (byte) 0x81, (byte) 0x88, (byte) 0xEE, (byte) 0x21,
  229. (byte) 0xC4, (byte) 0x1A, (byte) 0xEB, (byte) 0xD9,
  230. (byte) 0xC5, (byte) 0x39, (byte) 0x99, (byte) 0xCD,
  231. (byte) 0xAD, (byte) 0x31, (byte) 0x8B, (byte) 0x01,
  232. (byte) 0x18, (byte) 0x23, (byte) 0xDD, (byte) 0x1F,
  233. (byte) 0x4E, (byte) 0x2D, (byte) 0xF9, (byte) 0x48,
  234. (byte) 0x4F, (byte) 0xF2, (byte) 0x65, (byte) 0x8E,
  235. (byte) 0x78, (byte) 0x5C, (byte) 0x58, (byte) 0x19,
  236. (byte) 0x8D, (byte) 0xE5, (byte) 0x98, (byte) 0x57,
  237. (byte) 0x67, (byte) 0x7F, (byte) 0x05, (byte) 0x64,
  238. (byte) 0xAF, (byte) 0x63, (byte) 0xB6, (byte) 0xFE,
  239. (byte) 0xF5, (byte) 0xB7, (byte) 0x3C, (byte) 0xA5,
  240. (byte) 0xCE, (byte) 0xE9, (byte) 0x68, (byte) 0x44,
  241. (byte) 0xE0, (byte) 0x4D, (byte) 0x43, (byte) 0x69,
  242. (byte) 0x29, (byte) 0x2E, (byte) 0xAC, (byte) 0x15,
  243. (byte) 0x59, (byte) 0xA8, (byte) 0x0A, (byte) 0x9E,
  244. (byte) 0x6E, (byte) 0x47, (byte) 0xDF, (byte) 0x34,
  245. (byte) 0x35, (byte) 0x6A, (byte) 0xCF, (byte) 0xDC,
  246. (byte) 0x22, (byte) 0xC9, (byte) 0xC0, (byte) 0x9B,
  247. (byte) 0x89, (byte) 0xD4, (byte) 0xED, (byte) 0xAB,
  248. (byte) 0x12, (byte) 0xA2, (byte) 0x0D, (byte) 0x52,
  249. (byte) 0xBB, (byte) 0x02, (byte) 0x2F, (byte) 0xA9,
  250. (byte) 0xD7, (byte) 0x61, (byte) 0x1E, (byte) 0xB4,
  251. (byte) 0x50, (byte) 0x04, (byte) 0xF6, (byte) 0xC2,
  252. (byte) 0x16, (byte) 0x25, (byte) 0x86, (byte) 0x56,
  253. (byte) 0x55, (byte) 0x09, (byte) 0xBE, (byte) 0x91
  254. //}
  255. };
  256. #endregion
  257. /**
  258. * Define the fixed p0/p1 permutations used in keyed S-box lookup.
  259. * By changing the following constant definitions, the S-boxes will
  260. * automatically Get changed in the Twofish engine.
  261. */
  262. private const int P_00 = 1;
  263. private const int P_01 = 0;
  264. private const int P_02 = 0;
  265. private const int P_03 = P_01 ^ 1;
  266. private const int P_04 = 1;
  267. private const int P_10 = 0;
  268. private const int P_11 = 0;
  269. private const int P_12 = 1;
  270. private const int P_13 = P_11 ^ 1;
  271. private const int P_14 = 0;
  272. private const int P_20 = 1;
  273. private const int P_21 = 1;
  274. private const int P_22 = 0;
  275. private const int P_23 = P_21 ^ 1;
  276. private const int P_24 = 0;
  277. private const int P_30 = 0;
  278. private const int P_31 = 1;
  279. private const int P_32 = 1;
  280. private const int P_33 = P_31 ^ 1;
  281. private const int P_34 = 1;
  282. /* Primitive polynomial for GF(256) */
  283. private const int GF256_FDBK = 0x169;
  284. private const int GF256_FDBK_2 = GF256_FDBK / 2;
  285. private const int GF256_FDBK_4 = GF256_FDBK / 4;
  286. private const int RS_GF_FDBK = 0x14D; // field generator
  287. //====================================
  288. // Useful constants
  289. //====================================
  290. private const int ROUNDS = 16;
  291. private const int MAX_ROUNDS = 16; // bytes = 128 bits
  292. private const int MAX_KEY_BITS = 256;
  293. private const int INPUT_WHITEN = 0;
  294. private const int OUTPUT_WHITEN = INPUT_WHITEN + 16 / 4; // 4
  295. private const int ROUND_SUBKEYS = OUTPUT_WHITEN + 16 / 4;// 8
  296. private const int TOTAL_SUBKEYS = ROUND_SUBKEYS + 2 * MAX_ROUNDS;// 40
  297. private const int SK_STEP = 0x02020202;
  298. private const int SK_BUMP = 0x01010101;
  299. private const int SK_ROTL = 9;
  300. private readonly int[] gMDS0 = new int[MAX_KEY_BITS];
  301. private readonly int[] gMDS1 = new int[MAX_KEY_BITS];
  302. private readonly int[] gMDS2 = new int[MAX_KEY_BITS];
  303. private readonly int[] gMDS3 = new int[MAX_KEY_BITS];
  304. /**
  305. * gSubKeys[] and gSBox[] are eventually used in the
  306. * encryption and decryption methods.
  307. */
  308. private int[] gSubKeys;
  309. private int[] gSBox;
  310. private int k64Cnt;
  311. private void SetKey(byte[] key)
  312. {
  313. var k32e = new int[MAX_KEY_BITS / 64]; // 4
  314. var k32o = new int[MAX_KEY_BITS / 64]; // 4
  315. var sBoxKeys = new int[MAX_KEY_BITS / 64]; // 4
  316. gSubKeys = new int[TOTAL_SUBKEYS];
  317. if (k64Cnt < 1)
  318. {
  319. throw new ArgumentException("Key size less than 64 bits");
  320. }
  321. if (k64Cnt > 4)
  322. {
  323. throw new ArgumentException("Key size larger than 256 bits");
  324. }
  325. /*
  326. * k64Cnt is the number of 8 byte blocks (64 chunks)
  327. * that are in the input key. The input key is a
  328. * maximum of 32 bytes ( 256 bits ), so the range
  329. * for k64Cnt is 1..4
  330. */
  331. for (int i = 0; i < k64Cnt; i++)
  332. {
  333. var p = i * 8;
  334. k32e[i] = BytesTo32Bits(key, p);
  335. k32o[i] = BytesTo32Bits(key, p + 4);
  336. sBoxKeys[k64Cnt - 1 - i] = RS_MDS_Encode(k32e[i], k32o[i]);
  337. }
  338. for (int i = 0; i < TOTAL_SUBKEYS / 2; i++)
  339. {
  340. var q = i * SK_STEP;
  341. var A = F32(q, k32e);
  342. var B = F32(q + SK_BUMP, k32o);
  343. B = B << 8 | (int)((uint)B >> 24);
  344. A += B;
  345. gSubKeys[i * 2] = A;
  346. A += B;
  347. gSubKeys[i * 2 + 1] = A << SK_ROTL | (int)((uint)A >> (32 - SK_ROTL));
  348. }
  349. /*
  350. * fully expand the table for speed
  351. */
  352. var k0 = sBoxKeys[0];
  353. var k1 = sBoxKeys[1];
  354. var k2 = sBoxKeys[2];
  355. var k3 = sBoxKeys[3];
  356. gSBox = new int[4 * MAX_KEY_BITS];
  357. for (var i = 0; i < MAX_KEY_BITS; i++)
  358. {
  359. int b1, b2, b3;
  360. var b0 = b1 = b2 = b3 = i;
  361. switch (k64Cnt & 3)
  362. {
  363. case 1:
  364. gSBox[i * 2] = gMDS0[(P[P_01 * 256 + b0] & 0xff) ^ M_b0(k0)];
  365. gSBox[i * 2 + 1] = gMDS1[(P[P_11 * 256 + b1] & 0xff) ^ M_b1(k0)];
  366. gSBox[i * 2 + 0x200] = gMDS2[(P[P_21 * 256 + b2] & 0xff) ^ M_b2(k0)];
  367. gSBox[i * 2 + 0x201] = gMDS3[(P[P_31 * 256 + b3] & 0xff) ^ M_b3(k0)];
  368. break;
  369. case 0: /* 256 bits of key */
  370. b0 = (P[P_04 * 256 + b0] & 0xff) ^ M_b0(k3);
  371. b1 = (P[P_14 * 256 + b1] & 0xff) ^ M_b1(k3);
  372. b2 = (P[P_24 * 256 + b2] & 0xff) ^ M_b2(k3);
  373. b3 = (P[P_34 * 256 + b3] & 0xff) ^ M_b3(k3);
  374. goto case 3;
  375. case 3:
  376. b0 = (P[P_03 * 256 + b0] & 0xff) ^ M_b0(k2);
  377. b1 = (P[P_13 * 256 + b1] & 0xff) ^ M_b1(k2);
  378. b2 = (P[P_23 * 256 + b2] & 0xff) ^ M_b2(k2);
  379. b3 = (P[P_33 * 256 + b3] & 0xff) ^ M_b3(k2);
  380. goto case 2;
  381. case 2:
  382. gSBox[i * 2] = gMDS0[(P[P_01 * 256 + (P[P_02 * 256 + b0] & 0xff) ^ M_b0(k1)] & 0xff) ^ M_b0(k0)];
  383. gSBox[i * 2 + 1] = gMDS1[(P[P_11 * 256 + (P[P_12 * 256 + b1] & 0xff) ^ M_b1(k1)] & 0xff) ^ M_b1(k0)];
  384. gSBox[i * 2 + 0x200] = gMDS2[(P[P_21 * 256 + (P[P_22 * 256 + b2] & 0xff) ^ M_b2(k1)] & 0xff) ^ M_b2(k0)];
  385. gSBox[i * 2 + 0x201] = gMDS3[(P[P_31 * 256 + (P[P_32 * 256 + b3] & 0xff) ^ M_b3(k1)] & 0xff) ^ M_b3(k0)];
  386. break;
  387. }
  388. }
  389. /*
  390. * the function exits having setup the gSBox with the
  391. * input key material.
  392. */
  393. }
  394. /*
  395. * TODO: This can be optimised and made cleaner by combining
  396. * the functionality in this function and applying it appropriately
  397. * to the creation of the subkeys during key setup.
  398. */
  399. private int F32(int x, int[] k32)
  400. {
  401. int b0 = M_b0(x);
  402. int b1 = M_b1(x);
  403. int b2 = M_b2(x);
  404. int b3 = M_b3(x);
  405. int k0 = k32[0];
  406. int k1 = k32[1];
  407. int k2 = k32[2];
  408. int k3 = k32[3];
  409. int result = 0;
  410. switch (k64Cnt & 3)
  411. {
  412. case 1:
  413. result = gMDS0[(P[P_01 * 256 + b0] & 0xff) ^ M_b0(k0)] ^
  414. gMDS1[(P[P_11 * 256 + b1] & 0xff) ^ M_b1(k0)] ^
  415. gMDS2[(P[P_21 * 256 + b2] & 0xff) ^ M_b2(k0)] ^
  416. gMDS3[(P[P_31 * 256 + b3] & 0xff) ^ M_b3(k0)];
  417. break;
  418. case 0: /* 256 bits of key */
  419. b0 = (P[P_04 * 256 + b0] & 0xff) ^ M_b0(k3);
  420. b1 = (P[P_14 * 256 + b1] & 0xff) ^ M_b1(k3);
  421. b2 = (P[P_24 * 256 + b2] & 0xff) ^ M_b2(k3);
  422. b3 = (P[P_34 * 256 + b3] & 0xff) ^ M_b3(k3);
  423. goto case 3;
  424. case 3:
  425. b0 = (P[P_03 * 256 + b0] & 0xff) ^ M_b0(k2);
  426. b1 = (P[P_13 * 256 + b1] & 0xff) ^ M_b1(k2);
  427. b2 = (P[P_23 * 256 + b2] & 0xff) ^ M_b2(k2);
  428. b3 = (P[P_33 * 256 + b3] & 0xff) ^ M_b3(k2);
  429. goto case 2;
  430. case 2:
  431. result =
  432. gMDS0[(P[P_01 * 256 + (P[P_02 * 256 + b0] & 0xff) ^ M_b0(k1)] & 0xff) ^ M_b0(k0)] ^
  433. gMDS1[(P[P_11 * 256 + (P[P_12 * 256 + b1] & 0xff) ^ M_b1(k1)] & 0xff) ^ M_b1(k0)] ^
  434. gMDS2[(P[P_21 * 256 + (P[P_22 * 256 + b2] & 0xff) ^ M_b2(k1)] & 0xff) ^ M_b2(k0)] ^
  435. gMDS3[(P[P_31 * 256 + (P[P_32 * 256 + b3] & 0xff) ^ M_b3(k1)] & 0xff) ^ M_b3(k0)];
  436. break;
  437. }
  438. return result;
  439. }
  440. /**
  441. * Use (12, 8) Reed-Solomon code over GF(256) to produce
  442. * a key S-box 32-bit entity from 2 key material 32-bit
  443. * entities.
  444. *
  445. * @param k0 first 32-bit entity
  446. * @param k1 second 32-bit entity
  447. * @return Remainder polynomial Generated using RS code
  448. */
  449. private static int RS_MDS_Encode(int k0, int k1)
  450. {
  451. int r = k1;
  452. // shift 1 byte at a time
  453. r = RS_rem(r);
  454. r = RS_rem(r);
  455. r = RS_rem(r);
  456. r = RS_rem(r);
  457. r ^= k0;
  458. r = RS_rem(r);
  459. r = RS_rem(r);
  460. r = RS_rem(r);
  461. r = RS_rem(r);
  462. return r;
  463. }
  464. /**
  465. * Reed-Solomon code parameters: (12,8) reversible code:
  466. * <p>
  467. * <pre>
  468. * G(x) = x^4 + (a+1/a)x^3 + ax^2 + (a+1/a)x + 1
  469. * </pre>
  470. * where a = primitive root of field generator 0x14D
  471. * </p>
  472. */
  473. private static int RS_rem(int x)
  474. {
  475. int b = (int)(((uint)x >> 24) & 0xff);
  476. int g2 = ((b << 1) ^
  477. ((b & 0x80) != 0 ? RS_GF_FDBK : 0)) & 0xff;
  478. int g3 = ((int)((uint)b >> 1) ^
  479. ((b & 0x01) != 0 ? (int)((uint)RS_GF_FDBK >> 1) : 0)) ^ g2;
  480. return ((x << 8) ^ (g3 << 24) ^ (g2 << 16) ^ (g3 << 8) ^ b);
  481. }
  482. private static int LFSR1(int x)
  483. {
  484. return (x >> 1) ^
  485. (((x & 0x01) != 0) ? GF256_FDBK_2 : 0);
  486. }
  487. private static int LFSR2(int x)
  488. {
  489. return (x >> 2) ^
  490. (((x & 0x02) != 0) ? GF256_FDBK_2 : 0) ^
  491. (((x & 0x01) != 0) ? GF256_FDBK_4 : 0);
  492. }
  493. private static int Mx_X(int x)
  494. {
  495. return x ^ LFSR2(x);
  496. } // 5B
  497. private static int Mx_Y(int x)
  498. {
  499. return x ^ LFSR1(x) ^ LFSR2(x);
  500. } // EF
  501. private static int M_b0(int x)
  502. {
  503. return x & 0xff;
  504. }
  505. private static int M_b1(int x)
  506. {
  507. return (int)((uint)x >> 8) & 0xff;
  508. }
  509. private static int M_b2(int x)
  510. {
  511. return (int)((uint)x >> 16) & 0xff;
  512. }
  513. private static int M_b3(int x)
  514. {
  515. return (int)((uint)x >> 24) & 0xff;
  516. }
  517. private static int Fe32_0(int[] gSBox1, int x)
  518. {
  519. return gSBox1[0x000 + 2 * (x & 0xff)] ^
  520. gSBox1[0x001 + 2 * ((int)((uint)x >> 8) & 0xff)] ^
  521. gSBox1[0x200 + 2 * ((int)((uint)x >> 16) & 0xff)] ^
  522. gSBox1[0x201 + 2 * ((int)((uint)x >> 24) & 0xff)];
  523. }
  524. private static int Fe32_3(int[] gSBox1, int x)
  525. {
  526. return gSBox1[0x000 + 2 * ((int)((uint)x >> 24) & 0xff)] ^
  527. gSBox1[0x001 + 2 * (x & 0xff)] ^
  528. gSBox1[0x200 + 2 * ((int)((uint)x >> 8) & 0xff)] ^
  529. gSBox1[0x201 + 2 * ((int)((uint)x >> 16) & 0xff)];
  530. }
  531. private static int BytesTo32Bits(byte[] b, int p)
  532. {
  533. return ((b[p] & 0xff)) |
  534. ((b[p + 1] & 0xff) << 8) |
  535. ((b[p + 2] & 0xff) << 16) |
  536. ((b[p + 3] & 0xff) << 24);
  537. }
  538. private static void Bits32ToBytes(int inData, byte[] b, int offset)
  539. {
  540. b[offset] = (byte)inData;
  541. b[offset + 1] = (byte)(inData >> 8);
  542. b[offset + 2] = (byte)(inData >> 16);
  543. b[offset + 3] = (byte)(inData >> 24);
  544. }
  545. }
  546. }